
ALGEBRAIC AND GEOMETRIC
STRUCTURE IN MACHINE LEARNING

AND OPTIMIZATION ALGORITHMS

By

Zachary Charles

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2017

Date of final oral examination: December, 2017

The dissertation is approved by the following members of the Final Oral Committee:

N. Boston, Professor, Mathematics, Electrical and Computer Engineering

B. Lesieutre, Professor, Electrical and Computer Engineering

D. Papailiopoulos, Assistant Professor, Electrical and Computer Engineering

R. Willett, Associate Professor, Electrical and Computer Engineering

i

Abstract

As the scope and importance of machine learning applications widens, it becomes in-

creasingly important to design machine learning and optimization methods that will

efficiently and provably obtain desired outputs. We may wish to guarantee that an op-

timization algorithm quickly converges to a global minimum or that a machine learning

model generalizes well to unseen data. We would like ways to better understand how to

design and analyze such algorithms so that we can make such guarantees.

In this thesis, we take an algebraic and geometric approach towards understanding

machine learning and optimization algorithms. We show that various problems in both

areas have algebraic or geometric structure and that we can use this structure to design

more accurate and efficient algorithms. This geometric and algebraic viewpoint allows us

to design improved optimization methods for a control–theoretic problem, address struc-

tured clustering problems even in the presence of missing data, bound the generalization

error of learned models, and design more robust distributed optimization algorithms.

The first part of this thesis addresses the Belgian Chocolate problem, an open prob-

lem bridging optimization and control theory. We show that this problem has natural

algebraic structure that arises from the theory of stable polynomials. We use this struc-

ture to design an algebraic optimization method for this problem. This method allows

us to find larger values of the optimization version of the Belgian Chocolate problem

than have previously been found. It is also more efficient than previous approaches, and

allows us to tackle higher-order settings that have been previously out of reach.

In the second part, we analyze subspace clustering, the process of finding a union

ii

of subspaces that best fit a collection of data points. We describe an algorithm for

solving this problem. This algorithm naturally generalizes one popular method, sparse

subspace clustering (SSC) [31]. Using the underlying geometry of these subspaces and

our algorithm, we show that these algorithms can provably cluster the data correctly,

even under the presence of noise or missing data. We do so by using the underlying

convex geometry of the data points. In essence, we can reduce correctness of our al-

gorithm to geometric properties of the data, and then show that with high probability

these geometric conditions hold in certain models.

The third part of this thesis establishes novel generalization bounds for learning

algorithms that converge to global minima. We show these bounds for non-convex loss

functions satisfying the certain geometric conditions on their structure. We further show

that these conditions arise for some neural networks with linear activations. Finally, we

show that although stochastic gradient descent (SGD) and gradient descent generalize

similarly in such settings, there exist simple neural networks with multiple local minima

where SGD generalizes well but gradient descent does not.

In the final part, we develop a framework for deploying first-order optimization meth-

ods in distributed systems. Such algorithms are often beset by the straggler effect, where

the slowest compute nodes in the system dictate the overall running time. In this work,

we present computationally simple methods of assigning tasks in such systems that

guarantee fast and approximately accurate distributed computation. By examining the

problem from a linear algebraic point of view, we show that sacrificing a small amount

of accuracy can significantly increase algorithmic robustness to stragglers.

iii

Acknowledgements

I would like to thank my parents Rose and Cleve for their love and support. You taught

me how to work hard in order to achieve my goals. Without your love, care, and frankly,

patience for my own occasional ineptitude, none of this would have been possible.

Thank you to all my siblings, Shani, Mikki, Sara, Anthony, and Russell. I am a

better person for growing up with you, learning from you, and getting to be a part of

your lives. You are all wonderful and I love you dearly. Thank you in particular to

Anthony for commiserating with me as a fellow graduate student. You inspire me to

be curious, passionate, and hard-working. Thank you also to my siblings-in-law, Becky

and Emily. I could not be happier to have you as part of my family and as part of those

who have supported me through everything.

Thank you to my significant other, Kelda Baljon. You are a constant source of

warmth, guidance, and goofy humor. I hope that this work can display even a fraction

of the positivity and creativity you possess.

Thank you to my advisor, Nigel Boston for his guidance and advice over the years. I

have thoroughly enjoyed the academic adventure I have been on over the last five years

and I owe it in large part to your help and encouragement.

Thank you to Dimitris Papailiopoulos, Rebecca Willett, Bernie Lesieutre for not only

being on my committee but for all your advice, support, your work with me, and for all

you have taught me.

Thank you to my many other collaborators, mentors, and to other faculty and grad-

uate students who have helped me get to where I am today. This (probably partial) list

iv

includes Amin Jalali, Lalit Jain, Eric Bach, Jordan Ellenberg, Bob Barmish, Michael

Ferris, Stephen Wright, and Dan Wu. I have been fortunate to learn from you all.

Thank you to my roommate, friend, and brilliant collaborator, Alisha Zachariah. All

of this would have been so much harder without your friendship.

Finally, thank you to all of my other wonderful friends, including Micky Steinberg,

Jason Steinberg, Brandon Alberts, Adrian Tovar Lopez, Iván Ongay-Valverde, Karla

Ortiz, Ben Mark, Moisés Herradón, Eva Elduque, Solly Parenti, Juliette Bruce, Chris

Janjigian, Jim Brunner, Nathan Clement, Daniel Hast, Soumya Sankar, Aman Abhishek,

Dima Kuzmenko, Wanlin Li, and many others. You have made my time as a graduate

student wonderful, weird, adventurous, and downright hysterical.

v

List of Figures

1 A convex shape (left) and a non-convex shape (right) in 2 dimensions. If

we connect any two points in the shape on the left by a line, the line does

not leave the shape. In the shape on the right, the line connecting two of

the points leaves the shape. 26

2 The roots of the x, y, z corresponding to the largest δ found for deg(x) = 6

in [20]. 34

3 The roots of the x, y, z corresponding to the largest δ found for deg(x) = 8

in [20]. 35

4 The roots of the x, y, z corresponding to the largest δ found for deg(x) =

10 in [20]. 36

5 The largest known quasi-admissible δ for x, y, z designed algebraically, for

varying degrees of x. 50

6 A labeled dataset of cats (upper-left) and dogs (upper-right). In a su-

pervised learning task, we may wish to predict the label of the image

below. 63

vi

7 An unlabeled dataset of cats and dogs plotted in 2 dimensions. We also

give hypothetical clusters of this data set, denoted by various colors. Note

that from these colors, we can see more easily which are cats and which

are dogs. 64

8 An example of clustering points lying on 2-dimensional lines. On the left,

we show the groupings obtained by standard clustering algorithms. In

the middle, we show the underlying lines, and on the right we show the

true clusters we wish to find. 65

9 A matrix representing hypothetical user-movie preferences. A 1 indicates

the user rated a given movie positively, a 0 indicates the user rated a

given movie negatively, and a ? means that the user has not rated that

movie . 66

10 The dual direction v(x
(`)
i , X

(`)
−i , λ), where x

(`)
i is a corrupted version of the

true observation y
(`)
i . 82

11 The subspace incoherence µ` is the radius of the smallest sphere in the

span of X(`) containing all projections of y ∈ Y\Y(`) onto the polytope

determined by the dual directions. 82

12 Convergence rates for T iterations of various gradient-based algorithms

in the λ-SC and µ-PL settings. 157

13 The number of iterations T that achieves stability εstab = O(L2/µn) for

various gradient-based algorithms with step-size γ in the λ-SC and µ-PL

settings. 158

14 A neural network representing a generalized quadratic model. 163

vii

15 Graphs of the functions `(w; (−1, 1)) (left), `(w; (−12 , 1)) (middle), and g(w) =

1
2 [`(w; (−1, 1)) + `(w; (−12 , 1))] (right). 164

16 Graph of the function `(w; (− 1
2ŵ), 0). By construction, this function has critical

points at w = 0, ŵ, 2ŵ. 164

18 A master-worker with three compute nodes. 173

19 A master-worker system with 4 workers and 1 gradient per worker. . . . 175

20 A master-worker system with 4 workers and 2 gradients per worker. . . . 176

21 A master-worker architecture of distributed computation with multiple

cores per machines. Each of the k functions is assigned to a subset of n

compute nodes. 180

22 A plot of the average one-step error err1(A)/k over 5000 trials. We take

k = 100, r = (1− δ)k for varying δ. The figure on the left has s = 5 while

the figure on the right has s = 10. 213

23 A plot of the average optimal decoding error err(A)/k over 5000 trials.

We take k = 100, r = (1 − δ)k for varying δ. The figure on the left has

s = 5 while the figure on the right has s = 10. 214

24 The average value of ‖ut‖22/k of a BGC for δ ∈ {0.1, 0.2, 0.3, 0.5, 0.8} and

varying t for 5000 trials. The figure on the left plots the algorithmic error

for sparsity s = 5, while the figure on the right plots the algorithmic error

for sparsity s = 10. 215

viii

List of Recipes

1 Pie Crust . 1

2 Yellow Cake . 3

3 Rhubarb Upside-Down Cake . 7

4 Fresh Pasta Dough . 9

5 Chocolate Mousse Cake . 24

6 Chocolate Olive Oil Cake . 42

7 Chocolate Raspberry Cake . 58

8 Croque-Madame . 61

9 Gougères . 78

10 Cranberry Pie with Streusel Topping . 115

11 Blackberry Cheesecake Galette . 127

12 Ginger Peach Pie . 154

13 Hearty Wheat Bread . 170

14 Challah with Raisins . 188

ix

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 How to Read this Thesis . 2

1.2 Baking a Better Cake: Machine Learning and Optimization 3

1.3 The Science of Food v. the Role of Mathematics 6

2 Mathematical Background 9

2.1 Optimization . 10

2.1.1 Convexity . 10

2.1.2 First-order Methods . 13

2.2 Machine Learning . 15

2.2.1 Optimization for Machine Learning 18

2.3 Summary of Results . 21

I Algebraic Optimization for Simultaneous Stabilization 23

3 Control, Optimization, and the Belgian Chocolate Problem 24

x

3.1 Background . 25

3.2 The Belgian Chocolate Problem . 27

3.2.1 Our Contributions . 29

3.3 Stability of Closed-Feedback Systems . 31

3.4 Motivation for our approach . 34

3.5 Admissible and Quasi-admissible δ . 37

3.6 Mathematical Perspective and Main Results 39

4 Algebraic Optimization for the Belgian Chocolate Problem 42

4.1 Low degree examples . 43

4.2 Algebraic specification . 46

4.3 Approximating quasi-admissible δ by admissible δ 51

4.4 Optimality of algebraic specification . 55

II Subspace Clustering 60

5 The Subspace Clustering Problem 61

5.1 Background . 62

5.1.1 Clustering . 62

5.1.2 Matrix Completion . 65

5.2 Prior Work . 67

5.2.1 Our Contributions . 69

5.3 Problem Statement . 70

5.3.1 Sparse Subspace Clustering . 70

5.3.2 LS-SSC . 72

xi

5.4 Mathematical Perspectives and Summary of Results 76

6 Subspace Clustering with Missing and Corrupted Data 78

6.1 Preliminaries . 79

6.1.1 Dual Programs and Convex Geometry 79

6.1.2 Dual Directions and Incoherence 81

6.2 Main Results . 82

6.2.1 Deterministic Model . 82

6.2.2 Random Model . 84

6.2.3 Missing Data Model . 85

6.3 Dual Certificates and the Deterministic Model 87

6.3.1 Dual Certificates . 87

6.3.2 Bounding ‖ν‖2 . 92

6.3.3 Towards a Deterministic Criteria 100

6.3.4 Finding Admissible λ . 101

6.3.5 Proof of Theorem 6.6 . 105

6.4 High-Dimensional Probability and the Random Model 106

6.5 Random Projections and Missing Data 111

III Stability and Generalization 114

7 Stability and Generalization of Learning Algorithms 115

7.1 Background . 116

7.2 Prior work . 118

7.2.1 Our Contributions . 120

xii

7.3 Algorithmic Stability . 121

7.3.1 Stability and (Strongly) Convex Loss Functions 123

7.4 Mathematical Perspective and Main Results 124

8 Stability and the Polyak- Lojasiewicz Condition 127

8.1 The Polyak- Lojasiewicz and Quadratic Growth Conditions 128

8.2 Black-box Stability of Approximate Global Minima 133

8.2.1 Pointwise Hypothesis Stability for PL/QG Loss Functions 134

8.2.2 Uniform Stability for PL/QG Loss Functions 141

8.3 Examples of PL Loss Functions . 146

8.3.1 Compositions of Strongly Convex and Piecewise-Linear Functions 146

8.3.2 Linear Neural Networks . 148

9 Stability of Some First-order Methods 154

9.1 Stability for Strongly Convex and PL Loss Functions 155

9.2 Stability of Gradient Descent for Convex Loss Functions 157

9.3 Instability of Gradient Descent for Non-convex Loss Functions 162

IV Distributed Machine Learning and Gradient Coding 169

10 Gradient Coding 170

10.1 Background . 171

10.1.1 Distributed Computation and the Straggler Effect 171

10.1.2 Distributed Machine Learning . 174

10.2 Previous Work . 177

xiii

10.2.1 Our Contributions . 178

10.3 Problem Statement . 179

10.3.1 Approximate Gradient Coding . 181

10.4 Decoding . 183

10.5 Mathematical Perspective and Main Results 185

11 Approximate Gradient Codes 188

11.1 Fractional Repetition Codes . 189

11.2 Adversarial Stragglers . 194

11.2.1 Adversarial Stragglers and Fractional Repetition Codes 194

11.2.2 Adversarial Straggler Selection is NP-hard 196

11.3 Bernoulli Gradient Codes . 200

11.3.1 Bounding the Decoding Error . 201

11.3.2 One-step Error of Bernoulli Gradient Codes 204

11.3.3 Regularized Bernoulli Gradient Codes 209

11.4 Simulations . 212

11.4.1 Decoding Error of Various Coding Schemes 212

11.4.2 Algorithmic Decoding Error of Bernoulli Coding 214

Bibliography 216

1

Chapter 1

Introduction

Recipe 1: Pie Crust

Ingredients

• 2 1
2 cups (315 grams) flour

• 1 tablespoon (15 grams) sugar

• 1 teaspoon (5 grams) salt

• 1 cup (2 sticks) butter, cold

• 1 cup ice water

• (Optional but recommended) 1
4 cup

vodka, cold

Preparation

1. Dice butter and chill.

2. Combine flour, sugar, salt, and butter

in a food processor. Process until the

butter forms pea-sized chunks. Trans-

fer to mixing bowl.

3. (Optional) If using vodka, sprinkle

over butter mixture.

4. Add water 1 tablespoon at a time un-

til the dough comes together.

5. Divide dough in half. Cover halves

with plastic wrap and refrigerate for

at least one hour, preferably longer.

2

I tried to come up with a “recipe” for a thesis for longer than I want to admit. The

plan was to highlight the arc of my graduate studies. It would have included ingredients

such as wonderful collaborators, the ability to accept failure, and coffee. While I still

believe that there is a way to do this tastefully (no pun intended), I have not been able

to find it. Instead, I included a recipe for pie crust from scratch. I hope that it serves

the same function.1

1.1 How to Read this Thesis

There may be no correct way to read this thesis, but there is certainly an incorrect

way to read it. Do not pass go, do not collect 200 dollars, and do not read this from

beginning to end.

This work is divided into four parts, each dealing with a different topic somehow

connected to machine learning and optimization. While related, none are necessary to

understand each other. All four parts have self-contained, non-mathematical introduc-

tions in their first chapter. These are the appetizers, but they are designed to be a meal

unto themselves. They explain what I have thought about for years and why that might

have been an academically acceptable way to lead my life, if not socially acceptable.

Each introduction is followed by a mathematical background and a statement of

results. These are perhaps the main courses, or better yet, today’s menu. Any subse-

quent chapters are the all-too-rich desserts that should probably be refused for reasons

of politeness and physical well-being.

1I am acutely aware that there is nothing new under the sun. This idea has been used to much better
effect in works such as Like Water for Chocolate by Laura Esquivel and Heartburn by Nora Ephron. I
can only hope that this work is at least unique in being the first dissertation on machine learning to
reference these novels.

3

The soup du jour happens to be this chapter. I strongly recommend it, especially

with a crusty slice of bread. If I had to recommend further reading to see if the taste is

acceptable, I would do so as follows:

• If you are in the mood for chocolate, see Part I.

• If you are partial to traditional French cooking, sample Part II.

• If the pie crust recipe has piqued your interest, try Part III.

• If working with yeast is not too intimidating, check out Part IV.

1.2 Baking a Better Cake: Machine Learning and

Optimization

The following is a simple, popular recipe for yellow cake. It has never produced a cake

with which I have been happy. Machine learning and optimization work in the same

way.2

Recipe 2: Yellow Cake

Ingredients

• 4 cups (500 grams) cake flour

• 2 teaspoons (10 grams) baking powder

• 1 1
2 teaspoons baking soda

• 1 teaspoon salt

• 2 sticks (1 cup) butter

• 2 cups (400 grams) sugar

• 2 teaspoons (10 ml) vanilla extract

2I am of course taking some liberties here. Machine learning typically requires less butter.

4

• 4 large eggs, room temperature

• 2 cups buttermilk (475 ml), shaken

Preparation

1. Preheat oven to 350◦ F. Butter two

9-inch round cake pans and line with

parchment paper.

2. In a large bowl, beat butter and sugar

with a mixer until pale and fluffy.

Beat in vanilla, followed by the eggs,

1 at a time. At low speed, beat in the

buttermilk until just combined

3. Sift dry ingredients together in a

medium bowl. Add this mixture to

the wet ingredients in three stages,

mixing until just incorporated.

4. Spread batter evenly in cake pans,

then drop on to counter several times

to eliminate air bubbles.

5. Bake for 35 to 40 minutes or until a

toothpick inserted into the center of

the cake comes out clean.

6. Frost to taste.

If you wanted to bake a cake, you could simply follow this recipe as is, with whatever

technical abilities you currently possess. The end result would almost surely be worse

than if the cake were made by someone using their own recipe they developed over time,

with experimentation, technical know-how, and knowledge of how ingredients interact

with each other.

The same is true of machine learning. Suppose we want to train a machine to

accomplish task X. Instead of deciding on a recipe to follow, we set up a loss function

that measures how well the machine performed on task X. Instead of following the

preparation steps in the recipe, we use optimization to find a way for the machine to

accomplish X that makes the loss function as small as possible. While it is usually simple

to set up some loss function and try a standard out-of-the-box optimization method, this

5

often takes too much computation time or else results in a machine learning algorithm

that is horribly inaccurate.

When designing a recipe, one has to be aware of what they’re trying to accomplish,

and how reasonable that goal is. How do we ensure the cake retains its moisture? Will

the cakes be sturdy enough to withstand the ordeal of being frosted? Can the recipe

be made by professional baker? What about an amateur baker, or a complete novice?

We must ask the same questions of our machine learning setup.3 Does the loss function

capture what we want the machine to do? Can it be efficiently computed? How do we

ensure that minimizing this loss actually corresponds to accomplishing X in practice?

Next comes the actual baking of the cake. What pieces of equipment do we need

to do justice to the recipe? Are there any unspoken tricks that we need to know to

make the cake light and fluffy? Can we perform step 3 in a slightly more efficient way

(by adding all the dry ingredients at once) and still make a good cake? These are

analogues of important questions in optimization. Will our optimization method lead

to a good solution? Does the optimization require more computation power than exists

at a research university? Will slight changes in our setup lead to drastic changes in its

output?4

Whether baking a cake or teaching a machine to accomplish a task or optimizing a

particularly important function, the questions are the same. For all three, we need ways

of analyzing what goes into these methods and ways of understanding what will come

out.

3Again, I am glossing over some details. As far as I am aware, frosting has yet to be useful in a
machine learning context.

4This last question is pertinent to baking, machine learning, and optimization. It is also more
relevant to writing this dissertation than I would like to admit.

6

1.3 The Science of Food v. the Role of Mathematics

Cooking, arguably much like machine learning, is mainly done heuristically. When

cooking dinner, most people do not stop to check the sodium content of their soy sauce

to see if it will change the texture of their stir-fry. After learning how to make a dish

once or twice, we may occasionally glance at a recipe for reference, but we typically

rely on intuition, experience, and improvisation. We substitute ingredients, we take

shortcuts, we use a smaller pan than we really should because the larger one is dirty.

We very rarely try to understand the chemistry and physics of water retention in the

food currently cooking on the stove. For most, it is simply not worth the time and

effort. Our weeknight meals are not gastronomically important enough to warrant this

behavior.

At the highest levels of cooking, however, a deep knowledge of the ingredients and

their chemical interactions is vital.5 This knowledge can be built up using chemistry

and physics, or it can be gained through experience over time. By the same token,

machine learning and optimization knowledge can be built up academically, or it can be

gained through experience in tuning algorithms. Ideally both, though machine learning

in practice currently seems to rely on an enormous amount of intuition.

To me, mathematics plays the role of food science in machine learning and optimiza-

tion. The discovery that vodka can be used to make flaky pie crust was aided by a

sophisticated understanding of chemistry [62]. By the same token, the insight in how to

effectively train neural networks was aided by knowledge of calculus and analysis [81].

With the advent of self-driving cars and medical diagnosis via machine learning, the

5If you are currently in the process of making meringues or the chocolate mousse cake in Recipe 5,
remember to use a metal spoon when scooping egg whites, otherwise they will collapse.

7

ability to understand the algorithms we use will only become more important. This is

what mathematics does for us. How do we ensure that self-driving cars will not learn

dangerous driving behavior over time? How do we ensure that our machine will correctly

diagnose patients with rare or even previously unknown conditions? How do we bring

out the moisture in our cake in a technically simple way?

I cannot answer the first of these two questions, but I am confident that the answers

will come in time using mathematics. As for the third, below is a variation on the

traditional sour cream cake that gives a wonderfully moist lemon-rhubarb taste, topped

with caramelized brown sugar.

Recipe 3: Rhubarb Upside-Down Cake

Ingredients

• 2 1
2 sticks (1 1

4 cups) butter

• 1 1
2 pounds rhubarb, sliced into 1

2 -inch

cubes

• 2 teaspoons cornstarch

• 1 1
2 cups sugar

• 1
2 cup brown sugar

• 1 1
4 teaspoons baking powder

• 1
2 teaspoon salt

• Zest of 1 lemon

• 1 teaspoon vanilla extract

• 4 large eggs, room temperature

• 1
3 cup sour cream

• 2 teaspoons lemon juice

Preparation

1. Preheat oven to 325◦ F. Grease a

9-inch springform pan and line with

parchment paper. Wrap bottom with

foil and place on a baking sheet.

2. In a medium bowl, mix rhubarb, corn-

starch, and 1
2 cup sugar.

8

3. Mix the brown sugar and 1
2 stick but-

ter in a pan over medium heat. Whisk

until smooth and bubbling. Sift to-

gether the cake flour, baking powder,

and salt.

4. Using fingers, work remaining sugar

and lemon zest together until uni-

form in color. Mix 2 sticks of butter

with the sugar mixture until light and

fluffy.

5. Add vanilla and mix well. Add eggs,

one at a time, mixing thoroughly after

each addition. Mix in the sour cream

and lemon juice.

6. Add the flour mixture in 4 stages, mix-

ing each time until just incorporated.

7. Pour the brown sugar mixture into the

cake pan, and spoon rhubarb and col-

lected juices on top. Spoon in batter

and smooth out.

8. Bake for 1 hour and 15 minutes, or

until a toothpick stuck in the middle

comes out clean.

9

Chapter 2

Mathematical Background

Recipe 4: Fresh Pasta Dough

Ingredients

• 2 cups flour

• 3 eggs

• 1 egg yolk

Preparation

1. Put flour in a large mixing bowl. Cre-

ate a mound in the center.

2. Add eggs and yolk. Using a fork, beat

the eggs and yolk and beginto incor-

porate the flour.

3. When the dough becomes pliable, use

your fingers to mix the rest of the

dough. Cover with plastic wrap and

let rest for 15 minutes.

4. Cut and roll pasta by hand or with a

pasta maker.

10

2.1 Optimization

Optimization involves minimizing or maximizing a function, possibly subject to one or

more constraints. An unconstrained optimization problem is generally of the form

min
x

f(x)

for some function f . Note that if we would like to maximize f(x), we can instead

minimize −f(x). We will let f ∗ denote the minimum value of f(x). Of course, most

problems of interest, both theoretically and practically, involve constrains on what x are

possible. To account for this, a general optimization problem is of the form

min
x

f(x)

subject to x ∈ Ω.

(2.1)

Here, Ω is our feasible set. Oftentimes Ω is constructed by requiring certain in-

equalities or equalities involving x to hold. The study of optimization generally involves

understanding these problems and developing methods to solve them efficiently and

accurately. As we will discuss below, optimization and machine learning are tightly in-

tertwined, as most machine learning algorithms are trained via optimization problems.

While optimization of arbitrary functions over arbitrary domains remains a difficult

task, these problems can become somewhat simpler when f(x) and Ω are convex.

2.1.1 Convexity

In this section we will discuss convex sets and functions and their implications for op-

timization. For simplicity, we will let Ω be a subset of Rn, though optimization can be

performed over more general spaces.

11

Definition 2.1. A set Ω ⊆ Rn is convex if for all x, y ∈ Ω and t ∈ [0, 1],

(1− t)x1 + tx2 ∈ Ω.

Many results in optimization and analysis more generally involve examining the line

between two feasible points. By imposing the condition that this line is contained within

the feasible set, we can provide better analysis of machine learning methods. We can

extend this notion to functions relatively simply.

Definition 2.2. Let Ω ⊆ Rn be convex. A function f : Ω → R is convex if for all

x1, x2 ∈ Ω and t ∈ [0, 1],

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2).

Some important examples of convex functions include affine functions, and `p norms

for p ≥ 2. More generally, any norm a on vector space is convex by the triangle inequality

and homogeneity. These are especially important in machine learning as we often use

specific norms in our loss functions in an attempt to make the output have some desirable

property.

We say that f is strictly convex if the inequality above is replaced by a strict in-

equality. We can further restrict to a smaller, better behaved class of functions called

strongly convex functions.

Definition 2.3. Let Ω ⊆ Rn be convex. A function f : Ω → R is strongly convex with

parameter λ > 0 if g(x) := f(x)− λ
2
‖x‖22 is convex.

We will often use the fact that if f is twice-differentiable, then λ-strong convexity is

equivalent to the condition that for all x, y ∈ Ω,

f(y) ≥ f(x)+〉f(x), y − x〉+
λ

2
‖y − x‖22.

12

To see that convexity is important to optimization, note that we have the following

lemma about the global minima of convex functions.

Lemma 2.4. Suppose f : Rn → R is a differentiable, convex function. If x∗ is a global

minimizer of f then ∇f(x∗) = 0.

Suppose further that f is twice-differentiable. If x∗ is a global minimizer of f , then

∇f(x) = 0 and ∇2f(x∗) is positive semi-definite. Conversely, if ∇f(y) = 0 and ∇2f(y)

is positive-definite, then y is a global minimizer of f .

Points where ∇f(x) = 0 are referred to as critical points. Convex functions give us

useful geometric conditions on their global minima and in some cases, a useful test for

global optimality. We will use such properties when analyzing widely-used optimization

methods. We will also require the following notions.

Definition 2.5. A function f : Ω→ R is L-Lipschitz if for all x1, x2 ∈ Ω,

|f(x1)− f(x2)| ≤ L‖x1 − x2‖.

If f is assumed to be differentiable, this is equivalent to saying that for all x,

‖∇f(x)‖2 ≤ L. If the gradient of f is Lipschitz, then we say that the function is

smooth, as in the following definition.

Definition 2.6. A function f : Ω→ R is β-smooth if for all u, v ∈ Ω, we have

‖∇f(u)−∇f(v)‖2 ≤ β‖u− v‖.

Note that the β-smooth condition implies that for all x, y,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖22. (2.2)

13

2.1.2 First-order Methods

To solve optimization problems, we often use iterative, first-order methods. In an itera-

tive approach, we start off with some point x0. At each step t ≥ 1, we then apply some

update rule xt = g(xt−1) in order to eventually get to a point xT that is close to being a

minima of f . A method is said to be first-order if it involves the function f(x) that we

are operating and its first derivative ∇f(x), but no higher-order derivatives.

The most famous iterative, first-order method is called gradient descent, is described

below. Gradient descent typically involves fixing a number of iterations T and a step-size

parameter γ.

Algorithm 1: Gradient Descent

Input: A number of iterations T and a step-size γ.
1. Set w0 to be some initial feasible model.
2. For t = 1, . . . , T , set xt = xt−1 − γ∇f(xt−1).
3. Output wT .

The key insight of gradient descent is that by if we move in the negative gradient of

a function, we should generally decrease the function value. By doing this for enough

steps, we hope to eventually converge to a local or global minima of f(x). Various

adjustments can be made to this algorithm, such as changing the step-size at each step,

but we will focus on the algorithm above for now. We will also note that the first step

can be performed easily when we are performing unconstrained optimization, but may

require more sophisticated methods, including interior-point methods [98] when Ω is an

arbitrary convex set.

14

If f satisfies certain geometric properties, such as convexity, smoothness, and Lip-

schitz, we can give guarantees on the performance of gradient descent. This is an ex-

tremely pervasive and important theme throughout optimization and worth restating.

Key idea: By identifying the underlying structure of a function f(x) and a feasi-

ble region Ω, we can hope to design better algorithms and provide better analyses for

optimization.

As a simple example, when f is convex and L-Lipschitz we can show the following.

Lemma 2.7. Suppose that f(x) is a convex, L-Lipschitz and that we produce T iterations

of gradient descent, initializing at a point x0. Let ∆ := f(x0)− f ∗. If we choose a step-

size of γ = ∆/L
√
T , then

f

(
1

T

T∑

t=0

xt

)
− f ∗ ≤ ∆L√

T
.

In other words, the average of all the iterations produced will have error that de-

creases with T . By taking T large enough, we can get arbitrarily close to f ∗. Historically,

convexity is an enormous workhorse in such proofs and allows us to get a better handle

on the sub-optimality of the iterates. By contrast, much less can be said about the

convergence of gradient descent for non-convex functions. Moreover, in the non-convex

case we can only guarantee that gradient descent eventually converges to a critical point,

not a global minimizer. For further reference on such topics, see [84].

If we further restrict to strongly convex and smooth functions, we can improve our

convergence substantially. For details and further analysis, see [16].

Lemma 2.8. Suppose that f(x) is λ-strongly convex and β-smooth, and that we produce

T iterations of gradient descent, initializing at a point x0. Let ∆ := f(x0) − f ∗. If we

15

choose a step-size of γ = 1/β, then

f(xT)− f ∗ ≤
(

1− λ

β

)T
∆.

By restricting to convex functions, we can use first-order methods to solve optimiza-

tion problems more efficiently than we can for arbitrary functions. There are many other

methods to solve convex optimization problems, such as interior-point methods [98], but

first-order methods end up being particularly important to machine learning. In partic-

ular, there are many useful variants of gradient descent that have strong theoretical and

practical implications for machine learning. We discuss some below.

2.2 Machine Learning

Machine learning is growing in scope and ability at such a rapid rate that it is worth

stepping back and formally defining the goals of machine learning and how they are

accomplished. In the prototypical machine learning setting, we are given a large set of

examples

S = {(x1, y1), . . . , (xn, yn)}

where each vector xi ∈ Rn is a feature vector and yi ∈ R is its label. For instance, if

we are trying to determine whether a given image has a dog, we could construct x as

a vectorized version of the gray-scale image (so that it has real values), and its label

could be 1 if the image contains a dog and −1 otherwise. We want to design a prediction

function h that maps feature vectors to their correct label. Of course, we would like

h to at the very least succeed on our training set S. Therefore, we would like h that

16

minimizes the empirical risk function

RS[h] :=
1

n

n∑

i=1

1[h(xi) 6= yi]. (2.3)

Here, 1[A] is 1 if A is true and 0 otherwise. The links to optimization rear their head

almost immediately under this framework. We want to somehow minimize RS[h] over

the space of prediction functions h. In practice, simply minimizing RS[h] is not good

enough, as RS only contains information about data we have already seen. We would

like to design h so that it also generalizes well to unseen data. We will discuss the

question of how to guarantee that our classifiers generalize in Part III of this work.

This framework suggests, correctly, that we have an enormous amount of flexibility

in designing h. To design h in practice, we often want a model-based classifier. In many

scenarios, it is not good enough to have an accurate classifier. We would like the classifier

to be based on some underlying model so that we can hope to understand the classifier,

interpret its results in terms of the model, and compare it to other models. In such

instances, our prediction function h is a function of the data point xi ∈ Rn and a model

w ∈ Rm. For example, we could hope that the label yi is a linear function of the feature

vector xi. That is, for some w∗,

yi = xTi w
∗.

Then, for a given w, our prediction would be h(w;xi) = xTi w. The vector w allows

us to better understand the prediction function, as it encodes which features of xi are

important.

One can think of this w as a representation of the classification function h(w; ·).

We will typically fix h and then identify the space of possible prediction functions with

the space of possible models w. This is particularly useful in trying to minimize (2.3),

17

as it allows us to optimize over Rm instead of over the space of all possible functions.

This allows us to utilize geometric notions and conditions from finite-dimensional vector

space, and allows us to apply optimization algorithms such as gradient descent. While

this representation is not strictly necessary for most of the following, we will take a

model-based approach when possible due to its simplicity and widespread prevalence in

modern machine learning theory and applications.

We would like to find a model w such that the function h(w; ·) minimizes (2.3).

Unfortunately, optimizing this function directly is difficult and expensive. This is due

to the fact that 1[h(w;xi)− yi] is not differentiable or even continuous. To rectify this,

we will instead use more general loss functions to capture the difference between our

predicted label and the true label.

For example, consider the situation that, given a model w, our predicted label is

ŷi = xTi w. We wish to measure how close our predicted ŷi comes to the true yi. Since

these are both real numbers, one natural approach is to simply look at (ŷi − yi)2. Note

that this is 0 iff ŷi = yi, and positive otherwise. Moreover, this quantity is smaller if our

prediction is closer to yi. Therefore, instead of using 1[ŷi 6= yi] in (2.3), we will define

`(w; (xi, yi)) = (xTi w − yi)2

and try to find a model w minimizing

`(w) :=
1

n

n∑

i=1

`(w; (xi, yi)). (2.4)

As long as each `(·; (xi, yi)) is differentiable and convex, the function ` will be as well.

In general, finding prediction functions to solve machine learning problems reduces

to attempting to minimize a function of the form given in (2.4). The structure of the

18

loss function ` may differ from problem to problem. In order to ensure that w satisfies

certain desirable properties, such as sparsity or constraints on how large w is in norm,

we often add a regularizer. That is, we add some function g(w) that penalizes w not

satisfying certain properties. For example, we might use

`(w) =
1

n

n∑

i=1

`(w; (xi, yi)) +
λ

2
‖w‖22

to help contrain the size of w in the 2-norm, or we might use

`(w) =
1

n

n∑

i=1

`(w; (xi, yi)) + λ‖w‖1

to help encourage w to be sparse. Oftentimes we solve this problem for multiple λ >

0 and select the best one, or choose λ according to theoretical analysis. Note that

regularizing by λg(w) can still be incorporated into the framework of (2.4) by taking the

ith loss to be `(w; (xi, yi)) + λ
n
g(w).

2.2.1 Optimization for Machine Learning

As we discussed above, by using loss functions with desirable properties, we can turn the

difficult optimization problem in (2.3) into (2.4), which can be much easier to optimize.

In particular, if `(·; (x, y)) is convex and differentiable, then `(w) will be as well. We

can then apply standard optimization techniques such as the aforementioned gradient

descent to find an approximate minimizer. Unfortunately, the large-scale nature of

machine learning problems may make gradient descent unreasonable to use in practice.

For simplicity of nation, let `i(w) := `(w; (xi, yi)). Then note that standard gradient

properties imply

∇`(w) =
1

n

n∑

i=1

∇`i(w).

19

In other words, to perform one iteration of gradient descent, we must compute the

gradient of all n of our loss functions. Since we get one loss function per data point,

this means that each step requires as many gradient computations as points in our data.

Given that modern machine learning works with millions, even billions of data points,

this may not be practical.

To get around this, we can use variants of gradient descent that involve less computa-

tion per iteration. The most famous such example is stochastic gradient descent (SGD).

In SGD, we pick a random gradient to compute at each iteration instead of computing

every gradient at each step. Just like gradient descent, SGD involves fixing a number of

iterations T and a step-size γt for each iteration.

Algorithm 2: Stochastic Gradient Descent

Input: A number of iterations T and step-sizes γt for 1 ≤ t ≤ T .
1. Set w0 to be some initial feasible model.
2. For t = 1, . . . , T do:

Select it ∈ {1, . . . , n} uniformly at random.
Set wt = wt−1 − γt∇`i(wt−1).

3. Output wT .

Note that we now only need to perform one gradient computation per iteration. This

generally comes at a trade-off of having to perform more iterations to achieve the same

level of convergence as gradient descent. Still, this trade-off often works in favor of SGD,

making it the de facto standard in machine learning applications.

As one might expect, geometric properties of the loss functions `i will allow us to

control the convergence of SGD. There has been an enormous amount of work in the

convergence properties of SGD over the last decade. We will present one such theorem

here, but a more detailed collection of such results can be found in [16].

20

Lemma 2.9. Suppose that each `i is λ-strongly convex and L-Lipschitz. If we run T

iterations of SGD with step-sizes γt = 2/λ(t+ 1) then the iterates satisfy

f

(
T∑

t=1

2t

T (T + 1)
wt

)
− f ∗ ≤ 2L2

λ(T + 1)
.

In general, this theorem tells us that as long as we run T iterations with a specific

step-size, then our error decreases like 1
T

.

We can also interpolate between SGD and gradient descent using mini-batch SGD.

In this algorithm, we pick a random batch of examples and compute their associated

gradients. A full description of the algorithm is given below.

Algorithm 3: Mini-batch Stochastic Gradient Descent

Input: A number of iterations T , a batch-size B, and step-sizes γt for 1 ≤ t ≤ T .
1. Set w0 to be some initial feasible model.
2. For t = 1, . . . , T do:

Select a set St of B training examples uniformly at random.
Set

wt = wt−1 −
γt
B

∑

i∈St

∇`i(wt−1).

3. Output wT .

By setting B larger than 1 but smaller than n, we hope to make each iteration

relatively inexpensive, while requiring relatively few iterations for convergence. Many

machine learning algorithms rely heavily on analyses of SGD and gradient descent, as

well as computational tools for computing sums of gradients quickly. Doing such gradient

computations in a distributed setting will be discussed below in Part IV.

Many other variants of gradient descent have been proposed, especially for training

machine learning models, that also balance computational complexity per iteration and

the number of iterations required for convergence. Such algorithms include the stochas-

tic variance-reduced gradient method (SVRG) [46] and randomized coordinate descent

21

(RCD) [68].

In general, much of the work bridging machine learning and optimization involves

designing loss functions and regularization functions that accurately describe a problem,

and then determining how to best use optimization methods to find models minimizing

those loss functions. Further work must then be put into guaranteeing that the output

of these algorithms possesses properties that are desirable, or even necessary, for the

machine learning application.

2.3 Summary of Results

This thesis will attempt answer various questions lying at the intersection of optimization

and machine learning. The moral of these results is that a better understanding of

algebraic and geometric structure can lead to better optimization and machine learning

algorithms. In particular, this geometric and algebraic structure allows us to design more

efficient algorithms for machine learning problems and better understand the structure

of the output of said algorithms. This allows us to prove that our algorithms give

outputs that are not only “correct” from an optimization point of view, but also useful

in machine learning contexts.

In Part I, we will analyze a non-convex optimization problem motivated by control

theory. Despite the general difficulty of non-convex optimization, we will show that

we can use underlying algebraic structure to design a more accurate and efficient op-

timization method for solving the problem. In Part II, we will consider the problem

of subspace clustering and design convex optimization methods for the problem. Using

linear algebraic and geometric structure of the problem, we will prove that the output

22

of these programs can be used to solve the overarching problem. In Part III, we will

consider the question of how to guarantee that the output of optimization problems in

machine learning generalize to unseen data. We will show that by assuming general

geometric conditions on the loss functions, we can give strong guarantees on the gener-

alization of our machine learning models. Finally, in Part IV, we will discuss how to use

first-order methods for machine learning in a distributed setting. We do so by taking a

linear algebraic view of ways to assign tasks in distributed systems. Our main results

show that by allowing for small amounts of error in gradient computations, we can make

our distributed algorithms much more efficient.

23

Part I

Algebraic Optimization for

Simultaneous Stabilization

24

Chapter 3

Control, Optimization, and the

Belgian Chocolate Problem

Recipe 5: Chocolate Mousse Cake

Ingredients

• 10 ounces bittersweet chocolate

• 9 tablespoons butter

• 6 large eggs, separated

• Pinch of salt

• 3
4 cup sugar

• (Optional) 2 tablespoons brandy

• 1 teaspoon confectioner’s sugar

Preparation

1. Preheat the oven to 375◦ F, and po-

sition oven rack in lower center of the

oven. Lightly grease a 9-inch spring-

form pan and cover the bottom with

foil. Place on top of baking sheet.

2. Using a double boiler, melt together

chocolate and butter. Set aside to

cool.

3. In a bowl, whisk egg yolks and 1
2 cup

sugar until pale and frothy. Whisk in

brandy if using, then fold in chocolate

mixture.

4. Using an electric mixer, whisk egg

whites and salt until thick. Add re-

maining sugar and whisk until stiff.

25

Fold egg whites into chocolate mixture

in 2 stages.

5. Pour mixture into pan and and bake

for 15 minutes. Turn off oven and

crack open oven door. Let cake re-

main in oven for 15 minutes.

6. Allow cake to cool completely. Just

before serving, dust with confec-

tioner’s sugar.

In the following chapters, we will discuss the oddly named Belgian chocolate problem.

Unfortunately, the problem does not actually involve any chocolate. To remedy this, I

have provided recipes involving chocolate that can and should be eaten while perusing

this part.

3.1 Background

For better or for worse, mathematical problems of practical interest can often be reduced

to optimizing a certain quantity. In some settings, this optimization problem lies in

plain sight, such as if we want to configure a quantity (such as price) in a way that

maximizes profit. Other times, the underlying optimization problem is less obvious.

For example, suppose we wish to design a machine learning algorithm that predicts

whether a given image contains a dog. To do so, we typically try to find a model that

minimize a specific loss function. The loss function quantifies how many images your

model correctly predicts as containing a dog.

In optimization we are typically interested in finding the quantity x∗ that maximizes

(or minimizes) some function f(x) over all possible x. The possible x lie in some region

which we refer to as the feasible region. Not all x may be feasible. For example, if we

26

are setting a price of a good, then in many applications (but certainly not all) we might

want to restrict to having positive prices. This alters the region of prices that we wish

to consider. The difficulty of our optimization problem is affected by the geometry of

the feasible region and the structure of the function f(x).

One particularly desirable property of the feasible region is convexity. This property

states that if we take any two feasible points and draw a line between them, then the

line should not leave the region. Below are some examples of convex and non-convex

shapes in 2 dimensions.

Figure 1: A convex shape (left) and a non-convex shape (right) in 2 dimensions. If we
connect any two points in the shape on the left by a line, the line does not leave the
shape. In the shape on the right, the line connecting two of the points leaves the shape.

This underlying geometry makes optimizing over convex feasible regions much sim-

pler than optimizing over non-convex feasible region. Unfortunately, optimization prob-

lems of practical interest often have non-convex feasible regions. This means that stan-

dard optimization techniques are either ineffective or require you to run them for many

more iterations than in the convex setting. To overcome these difficulties, we often have

to use other structure contained in our problem.

27

In this chapter, we consider the Belgian chocolate problem,1 a famous open problem

bridging optimization and control theory. The problem involves maximizing a param-

eter δ over a complicated non-convex feasible region. We show that the problem has

underlying algebraic structure. We show that by exploiting this structure, we can design

better optimization methods for this problem. Moreover, our algebraic method does

not require running the algorithm over and over to get incrementally larger and larger

values. Instead of hoping that the algorithm eventually finds a good point, our method

directly identifies points that provide the largest known value of the Belgian chocolate

problem so far.

3.2 The Belgian Chocolate Problem

The Belgian chocolate problem is a famous open problem in control theory proposed by

Blondel in 1994. In the language of control theory, Blondel wanted to determine the

largest value of a process parameter for which stabilization of an unstable plant could

be achieved by a stable minimum-phase controller [9]. Blondel designed the plant to

be a low-degree system that was resistant to known stabilization methods, in the hope

that a solution would lead to development of new stabilization techniques. Specifically,

Blondel wanted to determine the largest value of δ > 0 for which the transfer function

P (s) = (s2 − 1)/(s2 − 2δs+ 1) can be stabilized by a proper, bistable controller.

For readers unfamiliar with control theory, this problem can be stated in simple al-

gebraic terms. To do so, we will require the notion of a stable polynomial. A polynomial

1Mathematically, the problem has nothing to do with chocolate. Its name comes from the fact that
Vincent Blondel, the one who proposed the problem, offered a kilogram of fine Belgian chocolate for its
solution. While our work gets us closer to the chocolate than all previous attempts so far, we have not
fully earned the kilogram of chocolate yet. One can dream.

28

is stable if all its roots have negative real part. The Belgian chocolate problem, then, is

as follows.

Belgian chocolate problem: Determine for which δ > 0 there exist real, stable

polynomials x(s), y(s), z(s) with deg(x) ≥ deg(y) satisfying

z(s) = (s2 − 2δs+ 1)x(s) + (s2 − 1)y(s). (3.1)

We call such δ admissible. In general, stability of x, y, z becomes harder to achieve the

larger δ is. Therefore, we are primarily interested in the supremum of all admissible

δ. If we fix a maximum degree n for x and y, then this gives us the following global

optimization problem for each n.

Belgian chocolate problem (optimization version):

maximize
δ,x(s),y(s)

δ

subject to x, y, z are stable,

z(s) = (s2 − 2δs+ 1)x(s) + (s2 − 1)y(s),

deg(y) ≤ deg(x) ≤ n.

(3.2)

Note that we can view a degree n polynomial with real coefficients as a (n + 1)-

dimensional real vector of its coefficients. Under this viewpoint, the space of polynomials

x, y, z that are stable and satisfy (3.1) is an extremely complicated non-convex space. As

a result, it is difficult to employ global optimization methods directly to this problem.

The formulation above does suggest an undercurrent of algebra in this problem. This

will be exploited to transform the problem into a combinatorial optimization problem

by finding points that are essentially local optima.

29

Previous work has employed various optimization methods to find even larger admis-

sible δ. Patel et al. [72] were the first to show that δ = 0.9 is admissible by x, y of degree

at most 11, answering a long-standing question of Blondel. They further showed that

δ = 0.93720712277 is admissible. In 2005, Burke et al. showed that δ = 0.9 is admissible

with x, y of degree at most 3[17]. They also improved the record to δ = 0.94375 using

gradient sampling techniques. In 2007, Chang and Sahinidis used branch-and-reduce

techniques to find admissible δ as large as 0.973974 [20]. In 2012, Boston used alge-

braic techniques to give examples of admissible δ up to 0.97646152 [11]. Boston found

polynomials that are almost stable and satisfy (3.1). Boston then used ad hoc methods

to perturb these to find stable x, y, z satisfying (3.1). While effective, no systematic

method for perturbing these polynomials to find stable ones was given.

3.2.1 Our Contributions

In this chapter, we extend the approach used by Boston in 2012 [11] to achieve the

largest known value of δ so far. We will refer to this method as the method of algebraic

specification. We show that these almost stable polynomials serve as limiting values

of the optimization program. Empirically, these almost stable polynomials achieve the

supremum over all feasible δ. Furthermore, we give a theoretically rigorous method for

perturbing the almost stable polynomials produced by algebraic specification to obtain

stable polynomials. Our approach shows that all δ ≤ 0.9808348 are admissible. This

gives the largest known admissible value of δ to date. We further show that previous

global optimization methods are tending towards the limiting values of δ found via our

optimization method.

30

We do not assume any familiarity on the reader’s part with the algebra and control

theory and will introduce all relevant notions. While we focus on the Belgian chocolate

problem throughout the chapter, we emphasize that the general theme of this chapter

concerns the underlying optimization program. We aim to illustrate that by considering

the algebraic structure contained within an optimization problem, we can develop better

global optimization methods.

While our approach may sound foreign, even to the reader versed in optimization, we

will show that our algebraic optimization method outperforms prior global optimization

methods for solving the Belgian chocolate problem. We will contrast our method with

the optimization method of Chang and Sahinidis [20] in particular. Their method used

iterative branch-and-reduce techniques [82] to find what was the largest known value of δ

until our new approach. Due to the complicated feasible region, their method may take

huge numbers of iterations or converge to suboptimal points. Our method eliminates the

need for these expensive iterative computations by locating and jumping directly to the

larger values of δ. This approach has two primary benefits over [20]. First, it allows us to

more efficiently find δ as we can bypass the expensive iterative computations. This also

allows us to extend our approach to cases that were not computationally tractable for

[20]. Second, our approach allows us to produce larger values of δ by finding a finite set

of structured limit points. In low-degree cases, this set provably contains the supremum

of the problem, while in higher degree cases, the set contains larger values of δ than

found in [20].

31

3.3 Stability of Closed-Feedback Systems

In control theory, we are often concerned with the stability of a dynamical system. We

will focus on the setting that our dynamical system is a closed-feedback system (otherwise

known as a closed loop system). In a closed-feedback system, the system adjusts its input

based on its output. For notational purposes, given t ∈ C, we let Re(t) denote its real

part. We will let R[s] denote the set of polynomials in s with real coefficients.

As shown in most introductory references on control theory (see [5] for example),

the dynamics of a single closed-feedback loop can be captured by its transfer function.

In many typical applications, the this transfer function is a rational function. For the

purposes of this work, we suppose that the transfer function P (s) is rational and given

by

P (s) =
b(s)

a(s)

where a and b are coprime polynomials. We want to design a controller that somehow

stabilizes the feedback system. Mathematically, a controller is a rational function

C(s) =
y(s)

x(s)

where x and y are coprime polynomials. We are interested in the stability of the feedback

system. In particular, we would like a system with bounded input to have bounded

output (BIBO). As it turns out, this property is equivalent to the rational function

being stable, as defined below.

Definition 3.1. A rational function φ(s) : C→ C is stable if it has no poles t ∈ C with

Re(t) ≥ 0.

32

In particular, P (s) = b(s)/a(s) is stable iff a(s) has no roots with nonnegative real

part. We now define the notion of stability for a feedback system.

Definition 3.2. A system with transfer function P (s) and controller C(s) is stable if

the closed-loop transfer function

H(s) :=
P (s)C(s)

1 + P (s)C(s)

is stable.

Using P (s) = b(s)/a(s), C(s) = x(s)/y(s) for a, b coprime and x, y coprime, simple

computations show the following lemma.

Lemma 3.3. The system above is stable if and only if a(s)x(s) + b(s)y(s) has no zero

t such that Re(t) ≥ 0.

In control theory, we are often given P (s) and asked to construct C(s) so that the

system is stable. Moreover, we may be interested in designing C(s) so that it is stable

or bistable, as defined below.

Definition 3.4. A rational function φ(s) : C→ C is bistable if it has no poles or zeros

with nonnegative real part.

In other words, φ(s) is bistable iff both φ(s) and 1
φ(s)

are stable. In the Belgian

chocolate problem, Blondel considered the transfer function

P (s) =
s2 − 1

s2 − 2δs+ 1
.

Here, δ is a process parameter taking values between 0 and 1. Blondel was specifically

interested in the following question concerning this transfer function.

33

Belgian chocolate problem: For which δ ∈ [0, 1] can P (s) be stabilized by a rational,

bistable controller?

Let C(s) = y(s)/x(s). Saying that C(s) is bistable is equivalent to saying that x, y

have no roots with nonnegative real part. In an unfortunate abuse of notation, we say

that a polynomial is stable if it has no roots with nonnegative real part. In the following,

this is the only notion of stability we will refer to. By Lemma , the Belgian chocolate

problem is equivalent to the following question.

Belgian chocolate problem: For which δ ∈ [0, 1] are there real, stable polynomials

x(s), y(s) such that

z(s) = (s2 − 2δs+ 1)x(s) + (s2 − 1)y(s)

is also stable?

Equivalently, we want to design real, stable polynomials x, y, z satisfying

(s2 − 2δs+ 1)x(s) + (s2 − 1)y(s) = z(s).

As it turns out, by relaxing the stability condition to one of quasi-stability (where we

allow for roots with zero real part), we can construct such x, y, z relatively easily. We

will then be able to approximate these quasi-stable polynomials by stable ones.

34

3.4 Motivation for our approach

Figure 2: The roots of the x, y, z corresponding to the largest δ found
for deg(x) = 6 in [20].

In order to explain our approach, we will discuss previous approaches to the Belgian

chocolate problem in more detail. Such approaches typically perform iterative non-

convex optimization in the space of stable controllers in order to maximize δ. In [20],

Chang and Sahinidis formulated, for each n, a non-convex optimization program that

sought to maximize δ subject to the polynomials x, y, (s2 − 2δs+ 1)x+ (s2 − 1)y being

stable and such that n ≥ deg(x) ≥ deg(y). For notational convenience, we will always

define z = (s2 − 2δs + 1)x + (s2 − 1)y. Chang and Sahinidis used branch-and-reduce

techniques to attack this problem for n up to 10. We plot these in Figures 2, 3, and 4.

35

Figure 3: The roots of the x, y, z corresponding to the largest δ found
for deg(x) = 8 in [20].

We should note that these plots omit two roots of x in each case. The only roots of

x that were omitted are very close to −δ±
√
δ2 − 1. This suggests that x should have a

factor close to (s2+2δs+1). Examining the remaining roots, a pattern emerges. Almost

all the roots of these polynomials are close to the imaginary axis and are close to a few

other roots. In fact, most of these roots have real part in the interval (−0.01, 0). In

other words, the x, y, z are approximated by polynomials with many repeated roots on

the imaginary axis.

This suggests the following approach. Instead of using non-convex optimization to

iteratively push x, y, z towards polynomials possessing repeated roots on the imaginary

axis, we will algebraically construct polynomials with this property. This will allow us

to immediately find large limit points of the optimization problem in (3.2). While the

x, y, z we construct are not stable, they are close to being stable. We will show later that

36

Figure 4: The roots of the x, y, z corresponding to the largest δ found
for deg(x) = 10 in [20].

we can perturb x, y, z and thereby push their roots just to the left of the imaginary axis,

causing them to be stable. This occurs at the expense of decreasing δ by an arbitrarily

small amount.

Our method only requires examining finitely many such limit points. Moreover, for

reasonable degrees of x and y, these limit points can be found relatively efficiently. By

simply checking each of these limit points, we reduce to a combinatorial optimization

problem. This combinatorial optimization problem provably achieves the supremal val-

ues of δ for deg(x) ≤ 4. For higher degree x, our method finds larger values of δ than

any previous optimization method thus far. In the sections below we will further explain

and motivate our approach, and show how this leads to the largest admissible δ found

up to this point.

37

3.5 Admissible and Quasi-admissible δ

In this section, we will relax the notion of stability to one of quasi-stability, and discuss

this notion in the context of the Belgian Chocolate problem. Recall that for p(s) ∈ R[s],

we call p(s) stable if every root t of p satisfies Re(t) < 0. Below, we define a relaxation

of this condition where we allow roots to have zero real part.

Definition 3.5. We say that a polynomial p(s) is quasi-stable if every root t of p satisfies

Re(t) ≤ 0.

We let H denote the set of all stable polynomials in R[s], and we let H denote the

set of quasi-stable polynomials of R[s]. Note that H ⊆ H. We let Hm, Hm denote the

sets of stable and quasi-stable polynomials respectively of degree at most m. These also

satisfy Hm ⊆ Hm. We will now define the notion of admissibility with respect to the

Belgian chocolate problem.

Definition 3.6. We call δ admissible if there exist x, y ∈ H such that deg(x) ≥ deg(y)

and

(s2 − 2δs+ 1)x(s) + (s2 − 1)y(s) ∈ H. (3.3)

Definition 3.7. We call δ quasi-admissible if there exist x, y ∈ H such that deg(x) ≥

deg(y) and

(s2 − 2δs+ 1)x(s) + (s2 − 1)y(s) ∈ H. (3.4)

Note that since quasi-stability is weaker than stability, quasi-admissibility is weaker

than admissibility. Our main theorem (Theorem 3.10 below) will show that if δ is quasi-

admissible, then all smaller δ are admissible. Note that this implies that the Belgian

chocolate problem is equivalent to finding the supremum of all admissible δ. We will

38

then find quasi-admissible δ in order to establish which δ are admissible. This is the

core of our approach. These quasi-admissible δ are easily identified and are limit points

of admissible δ.

In practice, one verifies stability by using the Routh-Hurwitz criteria. Suppose we

have a polynomial p(s) = a0s
n+a1s

n−1 + . . .+an−1s+an ∈ R[s] such that a0 > 0. Then

we define the n× n Hurwitz matrix A(p) as

A(p) =

a1 a3 a5 0 0

a0 a2 a6 0 0

0 a1 a3 0 0

0 a0 a2 0 0

...
...

...
.

...
...

0 0 0 an−2 an

.

Adolf Hurwitz showed that a real polynomial p with positive leading coefficient is

stable if and only if all leading principal minors of A(p) are positive. While it may seem

natural to conjecture that p is quasi-stable if and only if all leading principal minors are

nonnegative, this only works in one direction.

Lemma 3.8. Suppose p is a real polynomial with positive leading coefficient. If p is

quasi-stable then all the leading principal minors of A(p) are nonnegative.

Proof. If p(s) is quasi-stable, then for all ε > 0, p(s + ε) is stable. Therefore, for all

ε > 0, the leading minors of A(p(s+ ε)) are all positive. Note that

lim
ε→0

A(p(s+ ε)) = A(p).

Since the minors of a matrix are expressible as polynomial functions of the entries of

39

the matrix, the leading principal minors of A are limits of positive real numbers. They

are therefore nonnegative.

To see that the converse does not hold, consider p(s) = s4+198s2+1012. Its Hurwitz

matrix has nonnegative leading principal minors, but p is not quasi-stable. This example,

as well as a more complete characterization of quasi-stability given below, can be found

in [4]. In particular, it is shown in [4] that a real polynomial p with positive leading

coefficient is quasi-stable if and only if for all ε > 0, A(p(s + ε)) has positive leading

principal minors.

3.6 Mathematical Perspective and Main Results

In general, we show that quasi-admissible δ can be used to find admissible δ. We first

present the following theorem concerning which δ are admissible. We will defer the

proof until later as it is a simple corollary to a stronger theorem about approximating

polynomials in H by polynomials in H.

Theorem 3.9. If δ is admissible then all δ̂ < δ are also admissible.

For δ = 1, note that the Belgian chocolate problem reduces to whether there are

x, y ∈ H with deg(x) ≥ deg(y) such that (s− 1)2x+ (s2 − 1)y ∈ H. This cannot occur

for non-zero x, y since (s−1)2x+(s2−1)y has a root at s = 1. Theorem 3.9 then implies

that any δ ≥ 1 is not admissible. In 2012, Bergweiler and Eremenko showed that any

admissible δ must satisfy δ < 0.999579 [8].

On the other hand, if we fix x, y then there is no single largest admissible δ associated

to x, y. Standard results from control theory show that if δ is admissible by x, y then

40

for ε small enough, δ + ε is admissible by the same polynomials.

Therefore, supremum δ∗ over all admissible δ will not be associated to stable x, y.

From an optimization point of view, the associated optimization program in (3.2) has an

open feasible region. In particular, the set of admissible δ for (3.2) is of the form (0, δ∗n)

for some δ∗n that is not admissible by x, y of degree at most n. However, as we will later

demonstrate, quasi-admissible δ lie on the boundary of this feasible region. Moreover,

quasi-admissible δ naturally serve as analogues of local maxima. We will therefore find

quasi-admissible δ and use these to find admissible δ. In Section 4.3 we will prove the

following theorem relating admissible and quasi-admissible δ. The following is the main

theorem of our work and demonstrates the utility of searching for quasi-admissible δ.

Theorem 3.10. If δ is quasi-admissible, then all δ̂ < δ are admissible. Moreover, if δ

is quasi-admissible by quasi-stable x, y of degree at most n, then any δ̂ < δ is admissible

by stable x̂, ŷ of degree at most n.

This theorem shows that to find admissible δ, we need only to find quasi-admissible

δ. In fact our theorem will show that if δ is quasi-admissible via x, y of degree at most

n, then all δ̂ < δ are admissible via x, y of degree at most n as well. In short, quasi-

admissible δ serve as upper limit points of admissible δ. Also note that since admissible

implies quasi-admissible, Theorem 3.10 implies Theorem 3.9.

The proof of Theorem 3.10 will be deferred until Section 4.3. In fact, we will do more

than just prove the theorem. We will given an explicit algorithm for approximating

quasi-stable δ̂ by stable δ within any desired tolerance. We will also be able to use the

techniques in Section 4.3 to prove the following theorem showing that admissible δ are

always smaller than some quasi-admissible δ.

41

Theorem 3.11. If δ is admissible by x, y of degree at most n then there is some δ̂ > δ

that is quasi-admissible by x̂, ŷ of degree at most n. Moreover, this δ̂ is not admissible

by these polynomials.

In other words, for any admissible δ, there is a larger δ̂ that is quasi-admissible but

not necessarily admissible. Therefore, we can restrict to looking at polynomials x, y, z

with at least one root on the imaginary axis.

42

Chapter 4

Algebraic Optimization for the

Belgian Chocolate Problem

Recipe 6: Chocolate Olive Oil Cake

Ingredients

• 1 1
2 cups flour

• 3
4 cup cocoa powder

• 1 1
2 teaspoons baking soda

• 1
2 teaspoon salt

• 3
4 cup sugar

• 3
4 cup brown sugar

• 1
2 cup olive oil

• 1 1
2 cups coffee

• 1 tablespoon cider vinegar

Preparation

1. Heat oven to 350◦ F. Line a 9-inch

round cake pan with parchment paper

and grease.

2. Whisk flour, cocoa powder, baking

soda, salt, and sugar in the bottom of

a large mixing bowl. Add brown sugar

and olive oil, whisking to combine.

Add coffee and vinegar and whisk un-

til smooth.

3. Pour into prepared pan. Bake for

30 to 35 minutes or until the top is

springy and a tester inserted in the

center comes out clean.

43

4. (Optional): Glaze with a frosting

made from 3
4 cup melted chocolate

chips, 2 tablespoons cocoa powder, 3

table spoon olive oil, 2 tablespoons

corn syrup, and a pinch of salt.

4.1 Low degree examples

In this section we demonstrate that in low-degree settings, the supremum of all admis-

sible δ in (3.2) is actually a quasi-admissible δ. By looking at quasi-stable polynomials

that are not stable, we can greatly reduce our search space and directly find the supre-

mum of the optimization program in (3.2). For small degrees of x, y, we will algebraically

design quasi-stable polynomials that achieve previously known bounds on the Belgian

chocolate problem in these degrees.

Burke et al. [17] showed that for x ∈ H3, y ∈ H0, any admissible δ must satisfy

δ <
√

2 +
√

2/2 and for x ∈ H4, y ∈ H0, δ must satisfy δ <
√

10 + 2
√

5/4. He et al.

[41] later found x ∈ H4, y ∈ H0 admitting δ close to this bound.

In fact, these upper bounds on admissible δ are actually quasi-admissible δ that can

be obtained in a straightforward manner. For example, suppose we restrict to x of degree

3, y of degree 0. Then for some A,B,C, k ∈ R, we have

x(s) = s3 + As2 +Bs+ C

y(s) = kz(s) = s5

44

Instead of trying to find admissible δ using this x and y, we will try to find quasi-

admissible δ. That is, we want δ such that

z(s) = (s2 − 2δs+ 1)x(s) + (s2 − 1)y(s) ∈ H.

In other words, this z(s) can be quasi-stable instead of just stable. Note that z(s)

must be of degree 5. We will specify a form for z(s) that ensures it is quasi-stable.

Consider the case z(s) = s5. This is clearly quasi-stable as its only roots are at s = 0.

To ensure that z(s) = s5 and equation (3.1) holds, we require

(s2 − 2δs+ 1)(s3 + As2 +Bs+ C) + (s2 − 1)k = s5

Equating coefficients gives us the following 5 equations in 5 unknowns.

A− 2δ = 0

−2Aδ +B + 1 = 0

A− 2Bδ + C + k = 0

B − 2Cδ = 0

C − k = 0

In fact, ensuring that we have as many equations as unknowns was part of the

motivation for letting z(s) = s5. Solving for A,B,C, k, δ, we find

8δ4 − 8δ2 + 1 = 0

A = 2δ

B = 4δ2 − 1

C = 4δ3 − 2δ

k = 4δ3 − 2δ

45

Taking the largest real root of 8δ4− 8δ2 + 1 gives δ =
√

2 +
√

2/2. Taking A,B,C, k

as above yields polynomials x, y, z with real coefficients. One can verify that x is stable

(via the Routh-Hurwitz test, for example), while y is degree 0 and therefore stable.

Note that since z(s) = s5, z is only quasi-stable. Therefore, there is x ∈ H3, y ∈ H0

for which
√

2 +
√

2/2 is quasi-admissible. This immediately gives the limiting value for

x ∈ H3, y ∈ H0 discovered by Burke et al [17]. Combining this with Theorem 3.10, we

have shown the following theorem.

Theorem 4.1. For deg(x) ≤ 3, δ =

√
2+
√
2

2
is quasi-admissible and all δ <

√
2+
√
2

2
are

admissible.

Next, suppose that x has degree 4 and y has degree 0. For A, k, δ ∈ R, define

x(s) = (s2 + 2δs+ 1)(s2 + A)

y(s) = k

Note that as long as A ≥ 0, x will be quasi-stable and y will be stable for any k.

As above, we want quasi-admissible δ. We let z(s) = s6, so that z(s) is quasi-stable.

Finding A, δ, k amounts to solving

(s2 − 2δs+ 1)x(s) + (s2 − 1)y(s) = z(s)

⇔ (s2 − 2δs+ 1)(s2 + 2δs+ 1)(s2 + A) + (s2 − 1)k = s6

⇔ s6 + (A− 4δ2 + 2)s4 + (−4Aδ2 + 2A+ k + 1)s2 + (A− k) = s6

Note that the (s2 + 2δs + 1) term in x is used to ensure that the left-hand side will

have zero coefficients in its odd degree terms. Since (s2 + 2δs + 1) is stable, it does

not affect stability of x. Equating coefficients and manipulating, we get the following

46

equations.

16δ4 − 20δ2 + 5 = 0

A− 4δ2 + 2 = 0

k − A = 0

Taking the largest real root of 16δ4 − 20δ2 + 5 gives δ =
√

10 + 2
√

5/4. For this δ

one can easily see that A = 4δ2 − 2 ≥ 0, so x is quasi-stable, as are y and z by design.

Once again, we were able to easily achieve the limiting value discovered by Burke et al.

[17] discussed in Section 4.1 by searching for quasi-admissible δ. Combining this with

Theorem 3.10, we obtain the following theorem.

Theorem 4.2. For deg(x) ≤ 4, δ =

√
10+2

√
5

4
is quasi-admissible and all δ <

√
10+2

√
5

4

are admissible.

The examples above demonstrate how, by considering quasi-stable x, y and z, we can

find quasi-admissible δ that are limiting values of admissible δ. Moreover, the quasi-

stable δ above were found by solving relatively simple algebraic equations instead of

having to perform optimization over the space of stable x and y.

4.2 Algebraic specification

The observations in Section 3.4, the results in Section 3.6, and the examples in Section

4.1 all suggest the following approach we refer to as algebraic specification. This method

will be used to find the largest known values of δ found for any given degree. We

wish to construct quasi-stable x(s), y(s), z(s) with repeated roots on the imaginary line

47

satisfying (3.1). For example, we may wish to find polynomials of the following form:

x(s) = (s2 + 2δs+ 1)(s2 + A1)
4(s2 + A2)

2(s2 + A3)
2(s2 + A4).

y(s) = k(s2 +B1)
3(s2 +B2)

2.

z(s) = s14(s2 + C1)
2(s2 + C2)(s

2 + C3).

We refer to such an arrangement of x, y, z as an algebraic configuration. As long as

δ > 0, the parameters {Ai}4i=1, {Bi}2i=1, and {Ci}3i=1 are all nonnegative, and k is real,

x(s), y(s), z(s) will be real, quasi-stable polynomials. We then wish to solve

(s2 − 2δs+ 1)x(s) + (s2 − 1)y(s) = z(s). (4.1)

Recall that the (s2+2δs+1) factor in x(s) is present to ensure that the left-hand side

has only even degree terms, as the right-hand side clearly only has even degree terms.

Expanding (4.1) and equating coefficients, we get 11 equations in 11 unknowns. Using

PHCPack [90] to solve these equations and selecting the solution with the largest δ such

48

that the Ai, Bi, Ci ≥ 0, we get the following solution, rounded to seven decimal places:

δ = 0.9808348

A1 = 1.1856917

A2 = 6.6228807

A3 = 0.3090555

A4 = 0.2292503

B1 = 0.5430391

B2 = 0.2458118

C1 = 4.4038385

C2 = 0.7163490

C3 = 7.4637156

k = 196.1845537

The actual solution has δ = 0.980834821202 This is the largest δ we have found

to date using this method. By Theorem 3.10, we conclude the following theorem.

Theorem 4.3. All δ ≤ 0.9808348 are admissible.

In general, we can form an algebraic configuration for x(s), y(s), z(s) as

x(s) = (s2 + 2δs+ 1)

m1∏

i=1

(s2 + Ai)
ji . (4.2)

y(s) = k

m2∏

i=1

(s2 +Bi)
ki . (4.3)

z(s) = sc
m3∏

i=1

(s2 + Ci)
`i . (4.4)

49

For fixed degrees of x, y, note there are only finitely many such configurations. In-

stead of performing optimization over the non-convex feasible region of the Belgian

chocolate problem, we instead tackle the combinatorial optimization problem of maxi-

mizing δ among the possible configurations.

Note that c in (4.4) is whatever exponent is needed to make deg(z) = deg(x)+2. We

want x, y, z to satisfy (3.1). Expanding and equating coefficients, we get equations in

the undetermined variables above. As long as the number of unknown variables equals

the number of equations, we can solve and look for real solutions with δ and all Ai, Bi, Ci

nonnegative.

Not all quasi-stable polynomials can be formed via algebraic specification. In par-

ticular, algebraic specification forces all the roots of y, z and all but two of the roots of

x to lie on the imaginary axis. However, more general quasi-stable x, y, z could have

some roots with negative real part and some with zero real part. This makes the possible

search space infinite and, as discussed in Section 4.1, empirically does not result in larger

δ. Further evidence for this statement will be given in Section 4.4.

While the method of algebraic specification has demonstrable effectiveness, it be-

comes computationally infeasible to solve these general equations for very large n. In

particular, the space of possible algebraic configurations of x, y, z grows almost expo-

nentially with the degree of the polynomials. For large n, an exhaustive search over the

space of possible configurations becomes infeasible, especially as the equations become

more difficult to solve.

We will describe an algebraic configuration via the shorthand

[j1, . . . , jm1], [k1, . . . , km2], [`1, . . . , `m3]. (4.5)

50

This represents the configuration described in (4.2), (4.3), (4.4) above. In particular, if

the second term of (4.5) is empty then y = k, while if the third term of (4.5) is empty

then z is a power of s. For example, the following configuration is given by [3, 1], [2], [1]:

x(s) = (s2 + 2δs+ 1)(s2 + A1)
3(s2 + A2)

y(s) = k(s2 +B1)
2

z(s) = s10(s2 + C1)

A table containing the largest quasi-admissible δ we have found and their associated

algebraic configuration for given degrees of x is given below. Note that for each entry of

the table, given deg(x) = n and quasi-admissible δ, Theorem 3.10 implies that all δ̂ < δ

are admissible with x, y of degree at most n.

deg(x) Configuration δ
4 [1],[],[] 0.9510565
6 [2],[1],[] 0.9629740
8 [3],[1],[1] 0.9702883
10 [3,1],[2],[1] 0.9744993
12 [3,2],[2,1],[1] 0.9764615
14 [3,2,1],[2,1],[2] 0.9783838
16 [3,2,1,1],[2,2],[2] 0.9794385
18 [3,2,2,1],[2,2],[2,1] 0.9802345
20 [4,2,2,1],[3,2],[2,2,1] 0.9808348

Figure 5: The largest known quasi-admissible δ for x, y, z designed algebraically, for
varying degrees of x.

51

4.3 Approximating quasi-admissible δ by admissible

δ

In this section we will prove Theorem 3.10. Our proof will be algorithmic in nature. We

will describe an algorithm that, given δ that is quasi-admissible by quasi-stable polyno-

mials x, y, will produce for any δ̂ < δ stable polynomials x̂, ŷ admitting δ̂. Moreover,

given deg(x) = n, we will ensure that deg(x̂) ≤ n.

of Theorem 3.10. Suppose that for a given δ there are x, y, z ∈ H with deg(x) ≥ deg(y)

satisfying (3.1). Let n = deg(x). Define

R(s) :=
(s2 − 1)y(s)

z(s)
.

Note that for any s ∈ C, R(s) = 0 iff (s2−1)y(s) = 0, R(s) = 1 iff (s2−2δs+1)x(s) =

0, and R(s) is infinite iff z(s) = 0. Since x, y, z are quasi-stable, we know that for

Re(s) > 0, R(s) = 1 iff s = δ ± i
√

1− δ2 and R(s) = 0 iff s = 1. All other points where

R(s) is 0, 1, or infinite satisfy Re(s) ≤ 0. Precomposing R(s) with the fractional linear

transformation f(s) = (1 + s)/(1− s), we get the complex function

D(s) := R

(
1 + s

1− s

)
.

Note that this fractional linear transformation maps the unit disk {s||s| = 1} to the

imaginary axis {s|Re(s) = 0}. Also note that f−1(1) = 0, f−1(δ ± i
√

1− δ2) = ±it

where t =
√

1− δ/
√

1 + δ. Therefore, D(s) satisfies the following properties:

1. For |s| < 1, D(s) = 0 iff s = 0.

2. For |s| < 1, D(s) = 1 iff s = ±it.

52

3. |D(s)| <∞ for |s| < 1.

Note that the last holds by the quasi-stability of z(s). Since z(s) = 0 implies Re(s) ≤

0, D(s) =∞ implies |s| ≥ 1. In particular, the roots of x, y, z that have 0 real part now

correspond to points |s| = 1 such that D(s) = 1, 0,∞ respectively. For any ε > 0, let

Dε(s) := D

(
s

1 + ε

)
.

Dε(s) then satisfies

1. For |s| ≤ 1, Dε(s) = 0 iff s = 0.

2. For |s| ≤ 1, Dε(s) = 1 iff s = ±i(1 + ε)t.

3. |D(s)| <∞ for |s| ≤ 1.

Precomposing with the inverse fractional linear transformation f−1(s) = (s−1)/(s+ 1),

we get

Rε(s) := Dε

(
s− 1

s+ 1

)
.

By the properties of Dε(s) above, we find that Rε(s) satisfies

1. For Re(s) ≥ 0, Rε(s) = 0 iff s = 1.

2. For Re(s) ≥ 0, Rε(s) = 1 iff s = δε ± i
√

1− δ2ε where

δε =
1− (1 + ε)2t2

1 + (1 + ε2)t2
.

3. For Re(s) ≥ 0, |Rε(s)| <∞.

Moreover, Rε(s) 6= 0, 1,∞ for any s such that Re(s) < 0. We can rewrite Rε(s)

as Rε(s) = p(s)/q(s). Note that by the first property of Rε, the only root of p(s) in

53

{s|Re(s) ≥ 0} is at s = 1. By properties of f(s), f−1(s), one can show that p(−1) =

0. This follows from the fact that R(−1) = 0, which implies that lims→∞D(s) =

lims→∞Dε(s) = 0, and therefore Rε(−1) = 0. Therefore, p(s) = (s2 − 1)yε(s) where

yε(s) has no roots in {s|Re(s) ≥ 0}. By the second property of Rε, the only roots of

q − p in {s|Re(s) ≥ 0} are at ±δε + i
√

1− δ2ε . Therefore, q − p = (s2 − 2δεs + 1)xε(s)

where xε(s) has no roots in {s|Re(s) ≥ 0}. Finally, by the third property of Rε we find

that zε(s) = (s2 − 2δεs+ 1)xε(s) + (s2 − 1)yε(s) is stable. Moreover, basic properties of

fractional linear transformations show that if deg(x) = n ≥ deg(y) = m, then xε, yε are

both of degree n. Therefore, xε, yε, zε are stable polynomials satisfying (3.1) for δε. For

any δ̂ < δ, we can take ε such that δε = δ̂, proving the desired result.

Note that if we start with δ admissible by stable x, y, z of degree at most n, then

we can do the reverse of this procedure to perturb x, y, z to quasi-stable x̂, ŷ, ẑ. By

the reverse of the arguments above, x̂, ŷ, ẑ will be quasi-stable but at least one of these

polynomials will not be stable. These polynomials will be associated to some quasi-

admissible δ̂ > δ. This gives the proof of Theorem 3.11.

The proof above describes the following algorithm for perturbing quasi-stable x, y, z

satisfying (3.1) to obtain stable x̂, ŷ, ẑ satisfying (3.1).

Input: Real numbers δ, ε > 0 and real polynomials x, y, z ∈ H satisfying (3.1).

Output: δ̂ and real polynomials x̂, ŷ, ẑ ∈ H satisfying (3.1).

1. Let R(s) = (s2 − 1)y(s)/z(s). For ε > 0, compute

Rε(s) = R

(
(2 + ε)s+ ε

εs+ (2 + ε)

)
.

2. Reduce Rε(s) to lowest terms. Suppose that in lowest terms Rε(s) = p(s)/q(s).

54

3. Factor p(s) as (s2 − 1)ŷ(s) and factor q(s) − p(s) as (s2 − 2δ̂s + 1)x̂(s). Let

ẑ(s) = q(s).

To further illustrate the method of algebraic specification and this algorithm for

perturbing to get quasi-stable polynomials, we give the following detailed example.

Example 4.4. Say we are interested in x of degree 4. We may then give the following

algebraic specification of x, y, z discussed in Section 4.1. In the shorthand of (4.5), this

is the configuration [1], [], [].

x(s) = (s2 + 2δs+ 1)(s2 + A)

y(s) = k

z(s) = s6

As in Section 4.1, we solve (s2 − 2δs + 1)x(s) + (s2 − 1)y(s) = z(s). This implies that

δ, A, k satisfy 16δ4 − 20δ2 + 5 = 0, A = 4δ2 − 2, k = 4δ2 − 2. Taking the largest root of

16δ4− 20δ2 + 5 gives δ =
√

10 + 2
√

5/4, A = k = (
√

5 + 1)/2. Given numerically to six

decimal places, δ = 0.951057. Computing R(s) using exact arithmetic, we get

R(s) =
(s2 − 1)y(s)

z(s)
=

(s2 − 1)(
√

5 + 1)

2s6

We then use a fractional linear transformation s 7→ (1 + s)/(1− s) to get:

D(s) = R((1 + s)/(1− s))

=
2s(
√

5 + 1)(s− 1)4

s6 + 6s5 + 15s4 + 20s3 + 15s2 + 6s+ 1

One can verify that D(s) can equal 1 on the boundary of the unit circle, so we push

55

these away from the boundary (with ε = 0.01) by defining

Dε(s) = D
(s

1 + 0.01

)

=
6.40805(0.99010s− 1)4s

0.942045s6 + . . .+ 5.94054s

While we gave an approximate decimal form above for brevity, this computation can

and should be done with exact arithmetic. We let Rε(s) = fε((s − 1)/(s + 1)). Writing

Rε(s) as p(s)/q(s) in lowest terms, we get:

p(s) = 64080.55401(0.990990s+ 199.00990)4(s2 − 1)

q(s) = 0.62122× 1014s6 + . . .+ 0.94204

As proved above, p(s) will equal (s2 − 1)ŷ(s). Dividing p(s) by the s2 − 1 factor,

we get a polynomial ŷ(s) such that its only root is at s = −201. Therefore ŷ(s) is

stable. The denominator, ẑ(s) is easily verified to only have roots with negative part.

Finally, the polynomial q(s) − p(s) will equal (s2 − 2δ̂s + 1)x̂(s). Finding its roots,

one can show that q(s)− p(s) only has roots with negative real part, except for roots at

s = 0.950097 ± 0.311954i. These roots are of the form δ̂ ±
√
δ̂2 − 1 for δ̂ = 0.950097.

Therefore δ̂ = 0.950097 is admissible via the stable polynomials x̂, ŷ, ẑ. While we have

decreased δ slightly, we have achieved stability in the process. By decreasing ε, we can

get arbitrarily close to our original δ.

4.4 Optimality of algebraic specification

Not only does our method of algebraic specification find larger δ than have been found

before, one can view previous approaches to the Belgian chocolate problem as approxi-

mating algebraic specification. In particular, previously discovered admissible δ can be

56

seen as approximating some quasi-admissible δ′ that can be found via algebraic specifi-

cation.

For example, in [20], Chang and Sahinidis found that δ = 0.9739744 is admissible by

x(s) = s10 + 1.97351109136261s9

+ 5.49402092964662s8 + 8.78344232801755s7

+ 11.67256448604672s6 + 13.95449016040116s5

+ 11.89912895529042s4 + 9.19112429409894s3

+ 5.75248874640322s2 + 2.03055901420484s

+ 1.03326203778346,

y(s) = 0.00066128189295s5 + 3.611364710425s4

+ 0.03394722108511s3 + 3.86358782861648s2

+ 0.0178174691792s+ 1.03326203778319.

The roots of x, y, z were discussed in Section 3.4. As previously noted, x, y, z are

close to polynomials with repeated roots on the imaginary axis. Examining the roots

of x, y, z, one can see that x, y, z are tending towards quasi-stable polynomials x′, y′, z′

that have the same root structure as the algebraic configuration [3, 1], [2], [1]. In other

words, we will consider the following quasi-stable polynomials:

57

x′(s) = (s2 + 2δ′s+ 1)(s2 + A1)
3(s2 + A2)

y′(s) = k(s2 +B)2

z′(s) = s10(s2 + C)

Solving for the free parameters and finding the largest real δ′ such that A1, A2, B, C ≥

0, we obtain the following values, given to seven decimal places.

δ′ = 0.9744993

A1 = 1.3010813

A2 = 0.4475424

B = 0.5345301

C = 2.5521908

k = 3.4498736.

One can easily verify that taking these values of the parameters, the roots of x, y, z

are close to the roots of x′, y′, z′. These algebraically designed x′, y′, z′ possess the root

structure that x, y, z are tending towards. Moreover, the x′, y′, z′ show that δ′ is quasi-

stable and their associated δ′ gives an upper bound for the δ found by Chang and

Sahinidis. This demonstrates that the stable polynomials found by Chang and Sahinidis

are tending towards the quasi-stable ones listed above. Moreover, by Theorem 3.10 all

δ < 0.9744993 are admissible.

In fact, many examples of admissible δ given in previous work are approximating

quasi-admissible δ found via algebraic specification. This includes the previously men-

tioned examples in [17] and all admissible values of δ given by Chang and Sahinidis in

58

[20]. We further conjecture that for all admissible δ, there is a quasi-admissible δ′ > δ

that can be achieved by algebraically specified x, y, z.

More formally, if we fix x, y to be of degree at most n, let δ∗n denote the supremum

of the optimization problem in (3.2). Note that as discussed in Section 3.6, δ∗n is not

admissible by x, y of degree at most n. The empirical evidence given in this section and

in Sections 3.4 and 4.1 suggests that this δ∗n is quasi-admissible and can be obtained

through algebraic specification. This leads to the following conjecture.

Conjecture 4.5. For all n, δ∗n is quasi-admissible by some x, y, z that are formed via

algebraic specification.

Recipe 7: Chocolate Raspberry Cake

Cake Ingredients

• 3 ounces bittersweet chocolate

• 1 1
2 cups hot coffee

• 3 1
2 cups sugar

• 2 1
2 cups flour

• 1 1
2 cups cocoa powder

• 2 teaspoons baking soda

• 3
4 teaspoon baking powder

• 1 1
4 teaspoons salt

• 3 eggs

• 3
4 cup vegetable oil

• 1 1
2 cups buttermilk

• 3
4 vanilla

• 20 ounces frozen raspberries

• 2 tablespoon cornstarch

• Chocolate ganache or frosting

Preparation

1. Preheat the oven to 300◦ F. Line bot-

tom of two round cake pans with

59

parchment paper and grease.

2. Finely chop chocolate and combine

with hot coffee. Stir occasionally until

chocolate is melted and smooth.

3. In a large bowl, sift together 3 cups

sugar, flour, cocoa powder, baking

soda, baking powder, and salt.

4. In another bowl, mix egg yolks until

thickened slightly. Slowly add oil, but-

termilk, vanilla, and chocolate mix-

ture in stages, while mixing. Combine

well. Add sugar mixture and mix until

just combined.

5. Divide batter evenly between pans

and bake for 1 hour or until a tester in-

serted into the center comes out clean.

Cool completely in pans before remov-

ing.

6. Puree raspberries in a blender or food

processor. Press through a fine mesh

with the back of a spoon to remove

seeds. Add remaining sugar and corn-

starch and heat in a small pot until

the mixture boils. Stir constantly. Let

cool and spread on top ofone of the

two cake layers.

7. Place second cake on top of the other

and frost to taste.

60

Part II

Subspace Clustering

61

Chapter 5

The Subspace Clustering Problem

Recipe 8: Croque-Madame

Ingredients

• 5 tablespoons butter

• 1 tablespoon flour

• 2
3 cup milk

• Salt

• Nutmeg

• 4 thick slices of country bread

• 4 slices ham

• 2 slices Gruyère cheese

• 2 eggs

Preparation

1. Preheat oven to 300◦ F and preheat a

cast-iron skillet on the stove.

2. In a small saucepan, over medium

heat, melt 1 tablespoon butter. When

bubbles have subsided, add flour and

whisk for 1 minute. Slowly whisk in

milk and bring to a boil. Remove from

heat and season with salt and nutmeg.

3. Spread two slices of bread with sauce.

Lay ham on top of each and top with

cheese. Top each with a slice of bread.

4. Melt remaining butter and brush both

sides of sandwiches with butter. Place

sandwiches cheese side down in skil-

let and cook until brown. Flip and

repeat. Transfer skillet to oven and

bake until cheese is bubbling. Remove

sandwiches from skillet.

62

5. Fry eggs with a small amount of but-

ter. Slide one fried egg on top of each

sandwich. Serve hot.

5.1 Background

5.1.1 Clustering

Discussions of machine learning, especially news articles touting the success of machine

learning methods, often focus only on supervised learning. In supervised learning, we

have a data set with labels, and we wish to predict the labels from the data. For example,

suppose we have a collection of images featuring either a cat or a dog. The data are the

images themselves, while the labels are cat or dog depending on the image. We would

like to train a machine learning algorithm to be able to look at a new, unlabeled image

of a cat or dog and correctly determine which animal is featured in the image. We do so

by training the algorithm on enough labeled data, in the hopes that the algorithm can

eventually recognize features that images of cats may possess (such as pointy ears and

triangular noses) and that images of dogs may possess (such as floppy ears and longer

snouts). An example of such a labeled data set is given in Figure 6 below.

Unfortunately, many datasets have few or no labels. This can be because the labels

are too expensive to acquire (such as in professional medical diagnosis) or because they

are simply too difficult to acquire in a reasonable span of time. In such cases, we may

wish to use machine learning to understand our data better, even when we do not have

labels that we wish to predict. This is referred to broadly as unsupervised learning. In

63

Figure 6: A labeled dataset of cats (upper-left) and dogs (upper-right). In a supervised
learning task, we may wish to predict the label of the image below.

unsupervised learning, the goal is to design algorithms that can infer patterns and useful

information about our data, without access to any labels of our data. Suppose again that

we had images of cats and dogs, but this time without any knowledge of what animal

is featured in each image. To better understand our data, we might want to group

the images according to similarity. We can do this without knowing the individual

sentence structure of each image by instead looking at similarities between the images.

We might hope that even without direct knowledge of which images are cats and dogs,

the algorithm can implicitly group the images into cats and dogs, or that it groups

them by breed. If the algorithm can correctly do this, then it becomes much easier to

understand our data by simply looking at a representative image from each group. An

example is given in Figure 7 below.

Grouping unlabeled data by some notion of similarity is referred to as clustering,

and has been of great interest to machine learning theorists and data scientists over

the last two decades. This has sparked the development of a wide variety of clustering

algorithms, all with different measures of success for different scenarios. Two of the

64

Figure 7: An unlabeled dataset of cats and dogs plotted in 2 dimensions. We also give
hypothetical clusters of this data set, denoted by various colors. Note that from these
colors, we can see more easily which are cats and which are dogs.

most prominent such methods are k-means clustering and spectral clustering. To make

these methods work, however, we need some notion of distance between our data points,

where the distance accurately captures how dissimilar any two data points are.

In many practical applications, we would like to cluster our points according to a

certain idea, but may not have an obvious choice of distance between the data points.

As a motivating example, imagine we have a set of 2-dimensional points. Moreover,

suppose that while the points do not have any explicit structure, they lie on the union

of a small number number of lines through the origin.

If we only view the data points, then we do not immediately know what lines the

points lie on. We would like to group the points according to which line they lie on and

recover the underlying lines. In this case, standard clustering algorithms may fail us

because they tend to prioritize fat, ball-like shapes instead of thin linear shapes. Figure

65

8 below illustrates why standard clustering algorithms often fail in this setting.

Figure 8: An example of clustering points lying on 2-dimensional lines. On the left, we
show the groupings obtained by standard clustering algorithms. In the middle, we show
the underlying lines, and on the right we show the true clusters we wish to find.

This kind of task is a special case of subspace clustering. In general, we may have

points lying on larger-dimensional shapes, such as planes, and wish to recover the un-

derlying shapes and group the points accordingly.

5.1.2 Matrix Completion

To make matters worse, in practical applications we might have missing data. If you

imagine each data point as a list of values, some of these values may be altered by noise

(i.e., changed in some way artificially), or else missing entirely. When conducting a

survey, for example, many respondents do not answer all the questions (in which case

we have missing data), or fill out a question inaccurately (in which case we have noisy

answers). Subspace clustering when there is missing data or noise can be thought of as

a generalization of a famous problem in machine learning, matrix completion.

To understand this problem, we will imagine that we are Netflix, a popular movie

streaming service. We have access to an enormous amount of customer data that tells us

whether a given user rated a given movie highly. We compile all this information into a

66

matrix, a rectangular array of values. In this case, imagine that the columns correspond

to users, while the rows correspond to movies. The entry in a given row and column is

a 1 if the user liked the movie, and a 0 if they did not like the movie. The result might

look something like Figure 9 below.

61

To understand this problem, we will imagine that we are Netflix, a popular movie

streaming service. We have access to an enormous amount of customer data that tells us

whether a given user rated a given movie highly. We compile all this information in to a

matrix, a rectangular array of values. In this case, imagine that the columns correspond

to users, while the rows correspond to movies. The entry in a given row and column is

a 1 if the user liked the movie, and a 0 if they did not like the movie. The result might

look something like the following matrix.

Users

Movies

2
666666664

1 ? 0 1 ? 1

0 ? 1 1 0 ?

? 0 ? 0 ? 1

1 1 0 ? 1 ?

3
777777775

Since not every user has seen and rated every movie, much of this matrix is missing. It

is then our job to predict the missing entries of the matrix. This allows us to recommend

movies to users that we think they would enjoy. How to fill in the missing values in a

way that makes sense is referred to as the matrix completion problem.

If we make no assumptions whatsoever on the structure of the matrix, then the

missing data could take any value. Instead, we often assume that the matrix is low-

rank. This is a mathematical property that roughly translates to, in the Netflix problem,

that there are a small number of archetypal users and that every other user’s movie

preferences can be represented as a combination of the preferences of the archetypal

users. For example, there may be the “comedy user”, the “romance user”, the “horror

user”, and the “action user”, who all prefer their eponymous genres. The low rank

Figure 9: A matrix representing hypothetical user-movie preferences. A 1 indicates the
user rated a given movie positively, a 0 indicates the user rated a given movie negatively,
and a ? means that the user has not rated that movie

Since not every user has seen and rated every movie, much of this matrix is missing. It

is then our job to predict the missing entries of the matrix. This allows us to recommend

movies to users that we think they would enjoy. How to fill in the missing values in a

way that makes sense is referred to as the matrix completion problem.

If we make no assumptions whatsoever on the structure of the matrix, then the

missing data could take any value. Instead, we often assume that the matrix is low-

rank. This is a mathematical property that roughly translates to, in the Netflix problem,

that there are a small number of archetypal users and that every other user’s movie

preferences can be represented as a combination of the preferences of the archetypal

users. For example, there may be the “comedy user”, the “romance user”, the “horror

user”, and the “action user”, who all prefer their eponymous genres. The low rank

67

assumption says that everyone’s preferences can be represented in terms of these four

users’ preferences. A given user may be one-half comedy, one-fourth romance, one-fourth

action, and zero horror.

As it turns out, this assumption allows us to efficiently and accurately perform ma-

trix completion. The subspace clustering relaxes this assumption. It instead says that

there are multiple sets of archetypal users, and that every user can be represented as a

combination of the archetypal users from one of these sets. If there are enough sets, stan-

dard matrix completion techniques fail. We therefore need to derive new and efficient

methods to tackle this setting.

5.2 Prior Work

In many applications, including image compression [44, 101], network estimation [35],

video segmentation [22, 47], and recommender systems [104], what is ostensibly high-

dimensional data can be modeled as data sampled from a union of low-dimensional

subspaces. In subspace clustering, we observe a data matrix X ∈ Rn×N whose columns

lie near a union of several low-dimensional subspaces of Rn. We wish to cluster the

columns according to their subspace and infer the subspaces. In practice, X may be

corrupted by large amounts of noise, adversarial or otherwise, or it may have missing

entries.

Subspace clustering has experienced significant attention over the last decade, re-

sulting in many different algorithms with varying levels of established theory. These

include expectation-maximization methods [14], algebraic methods [92], matrix factor-

ization methods [22], and local sampling methods [77], among others. Of particular

68

note is sparse subspace clustering (SSC) [31], which exhibits good empirical perfor-

mance in many real data applications and enjoys provable guarantees on its performance

[86]. Moreover, various theoretical and empirical work show that SSC can handle high-

dimensional data matrices [86], outliers [87], and some forms of noisy measurements

[96].

When there are missing entries, subspace clustering is a generalization of low-rank

matrix completion [19]. Unlike low-rank matrix completion, the data matrix may have

high rank if there are many subspaces. While there are many algorithms for low-rank

matrix completion with theoretical guarantees on convergence and correctness [19], such

analysis has been more elusive for subspace clustering. Various algorithms for subspace

clustering with missing data have been proposed [40, 91, 102, 74, 30]. Many of these

exhibit strong empirical results but lack theoretical guarantees. On the other hand,

[34] gives a theoretically justified method for subspace clustering with missing data, but

require an unrealistically large number of samples. [75] gives information-theoretic lower

bounds on the number of observations per column required, but it is not known whether

the aforementioned methods meet these bounds.

Methods for subspace clustering with missing data typically require knowledge of the

location of the missing entries. Works like [30, 102] even exploit such knowledge in the

design of their estimators. In practice, such information may not be available. In some

applications, we face presence-only data, where we only record the observed presence

of a feature [73]. In ecological modeling, we often only have access to the observed

population presence of a species in a given location but we do not know when a species

is absent [97]. In [18], the authors acknowledge that in structured mammography data,

there is ambiguity in whether to interpret zeros as missing or as indicating that a breast

69

imaging radiology feature is actually not present. This ambiguity is common in many

models and applications [59, 33, 36], yet many proposed subspace clustering algorithms

cannot be used in this setting.

5.2.1 Our Contributions

In this work, we present and analyze a generalization of SSC, LS-SSC. The algorithm is

explained below in full, but involves using a Frobenius-norm loss functions, in addition

to the standard SSC regularization term. We provide analysis for LS-SSC and give

theoretical guarantees on its success. We give a deterministic criteria for success based

on the geometry of the true samples and the noise level defined as the maximum `2

norm of the additive error in each observation. The guarantee does not require any

distributional or structural assumptions on the additive noise. This allows us to show

that LS-SSC succeeds in the presence of missing data under the random subspaces,

random samples model. In such settings, we give an explicit bound on the number of

missing entries per column that the algorithm can tolerate.

One important facet of our work is that it is location-agnostic. The algorithm does

not require explicit knowledge of the location o the missing data. This allows these

estimators to be used in more general situations than algorithms such as those in [30, 102]

that require the locations of the missing entries. Moreover, our theoretical guarantees

all still work when we do not know the locations of the missing data.

70

5.3 Problem Statement

We are given a matrix X ∈ Rn×N , where X is the sum of an uncorrupted data matrix Y

and a noise matrix Z. We can view subspace clustering with missing data as a special

case of this setup where the unobserved entries of Y are replaced by 0 to obtain X. This

is equivalent to the setting where the noise matrix Z satisfies Zij = −Yij for each missing

entry (i, j). We do not assume that we know the locations of the missing data. This

way, we allow for a zero entry in X to correspond to an actual zero or to a missing entry.

We assume that the columns of Y come from a union of L low-dimensional subspaces

S1 ∪ S2 ∪ . . . ∪ SL.

We make no assumptions on how the subspaces are aligned so that they can intersect

arbitrarily. We do not assume that we know the underlying value of L.

Goal: We wish to find clusters C1, . . . , CL where C` consists of the indices of all

columns of Y drawn from S`. In other words, we wish to cluster our observations

according to their true underlying subspace.

As discussed above, a great deal of work has been devoted to subspace clustering,

especially when the observations are uncorrupted by noise or missing data. Below we

present one of the most successful approaches, sparse subspace clustering (SSC), first

proposed in [31].

5.3.1 Sparse Subspace Clustering

Suppose that X ∈ Rn×N is uncorrupted by noise. Therefore, the columns of X lie in a

union of low-dimensional subspaces S1 ∪ S2 ∪ . . . ∪ SL. Consider any column x drawn

71

from S1. The key insight in [31] is that X is self-expressive. To understand this, consider

the case that X does not come from a union of low-dimension subspaces, but is instead

a full rank n × N matrix. Then, to represent any column x as a linear combination of

other columns in X, we would typically need to use n distinct columns. However, if x

comes from S1 and enough observations from S1 are present in X, then we can represent

x as a linear combination of at most dim(S1) other columns. If dim(S1) is much smaller

than n, then this amounts to a sparse representation of x in terms of other columns.

For simplicity, suppose all the S` have dimension d. Then using the reasoning above,

if we have enough observations from each subspace then we can represent each column

x as a sparse linear combination of d other columns that are drawn from the same

subspace. Let c ∈ RN represent the coefficients of this sparse linear combination. Then

c generally encodes other columns in X that come from the same subspace as x. If we

amalgamate all the c into a matrix C, then C will approximately have a block structure,

where each block corresponds to the columns drawn from a given subspace. In particular,

W = |C| + |C|T will be an affinity matrix with a block structure. Here, W being an

affinity matrix simply means that Wij represents how the affinity between xi, xj. High

affinity means that there is a greater chance that they are drawn from the same subspace.

We can then use standard clustering algorithms on this matrix to recover the subspace

clusters.

Suppose we wish to find the sparse linear combination ci associated to xi. We could

solve the following optimization problem:

min
c
‖c‖0 s.t. xi = Xci, ci = 0.

Note that here ‖c‖0 denotes the number of non-zero elements in c. We enforce ci = 0,

72

as otherwise we could simply let ci be the vector with zeros everywhere and a 1 in entry

i. While the solution to this problem would give us a sparse linear combination, this

problem is not efficiently solvable. In particular, ‖ · ‖0 is a non-convex, non-continuous

function. As a result, we wish to use a convex relaxation of the function. We typically

use the `1 norm as a convex relation of ‖ ·‖0, as it is known to often find sparse solutions

to undetermined linear systems of equations [26]. Therefore, we instead solve, for every

column i,

min
c
‖c‖1 s.t. xi = Xci, ci = 0.

We can perform all N of these optimization problems simultaneously by solving the

following:

min
C
‖C‖1,1 s.t. X = XC, diag(C) = 0. (5.1)

SSC then uses spectral clustering [70] on the affinity matrix W = |C| + |C|T . The

clusters of W correspond to subspace clusters of the original matrix X. If we approx-

imately recover the sparse representations discussed above, then spectral clustering on

the graph with edge weights W will recover the correct clusters with high probability

[95].

5.3.2 LS-SSC

While there are a great deal of empirical and theoretical guarantees for SSC when X

is uncorrupted by noise, we have to change our approach when X has missing data or

noise added. In this setting, the X is no longer self-expressive. For example, consider

a column x. Note that x = y + z, where y is the true observation and z is some noise.

Since the matrix Y is self-expressive, we know that there is a sparse linear combination

73

c such that y = Y c. Therefore,

x−Xc = (y + z)− (Y + Z)c

= y − Y c+ z − Zc

= z − Zc.

Since c is sparse, if each column of Z is not too large and each entry of c is not too

large, then x−Xc will still be relatively small. In particular, we could try to minimize

‖x −Xc‖ according to some norm in addition to enforcing the self-expressive property

of c. That is, we could solve, for each column xi, the following optimization problem:

min
c
‖c‖1 + λ‖x−Xc‖22 s.t. ci = 0. (5.2)

Here λ is a parameter that can be tuned according to the problem. Note that the fact

that we use ‖c‖1 instead of ‖c‖0 helps not just to make this more efficient, but it also

helps limit the size of the entries of c, which in turn allows for x−Xc to be smaller.

Amalgamating (5.2) into a single optimization problem, we get the following problem:

min
C
‖C‖1,1 +

λ

2
‖XC −X‖2F s.t. diag(C) = 0. (5.3)

This optimization will be part of the full algorithm LS-SSC. Here LS stands for least-

squares, since the optimization above involves a least-squares loss. This variant has been

previously considered in the literature with different theoretical guarantees [87, 96] or

with only empirical evidence for its effectiveness [102].

This gives us the optimization problems for LS-SSC. We then apply spectral clus-

tering to the weighted graph G with affinity matrix W = |C| + |C|T . The resulting

clusters are the subspace clusters we return. We use the standard technique of estimat-

ing the number of clusters L̂ from the spectrum of the normalized Laplacian associated

74

to W [93]. The full algorithm for LS-SSC is given below.

Algorithm 4: LS-SSC

Input: A data matrix X ∈ Rn×N and λ > 0.
1. Solve

min
C
‖C‖1,1 + λ‖X −XC‖2F s.t. diag(C) = 0

2. Form the weighted graph G on N vertices with affinity matrix W = |C|+ |C|T .
3. Let σ1 ≥ σ2 ≥ . . . ≥ σN denote the eigenvalues of the normalized Laplacian of
G. Set

L̂ = N − argmax
i=1,...,N−1

(σi − σi+1).

4. Apply spectral clustering to G with L̂ clusters.
Output: Clusters X1, . . . ,XL̂.

There are many good existing ways of solving LS-SSC computationally. [96] describes

a method to solve (5.3) using a modification of the ADMM method [13]. Moreover, [87]

shows that TFOCS [7] has competitive performance in solving this optimization program

in practical applications.

One important facet of the optimization program above is that under many common

missing data models, we do not need to know the locations of the missing entries. When

data in X is missing, we often assume that it is replaced by a zero or some other value.

Note that if we do know the missing entry locations then we can always construct this

entry-wise zero-fill. In the event that we have such a matrix, we do not explicitly need

to encode where these zeros are. As discussed above in, this allows us to use these

algorithms to handle presence-only data, where the presence of a zero could indicate a

lack of a certain feature, or it could indicate that the presence of this feature was not

tested [73, 59, 33, 36].

Let C denote the output of (5.3). Then Cij ideally encodes whether columns i and

j come from the same subspace. In order for C to be a good estimate, we want it to

75

have no false positives, that is, we want Cij = 0 if i and j do not correspond to the same

subspace. Before elaborating on related works, we state informal versions of our main

results in both deterministic and random settings.

We wish to find conditions for which LS-SSC succeeds with high probability. A

good proxy for this is to show that C has no false positives [93], that is, for any i

and j corresponding to different subspaces, Cij = 0. This is reflected in the following

definition.

Definition 5.1 ([86]). We say that X obeys the subspace detection property with param-

eter λ if for all ` and for all xi drawn from S`, the columns ci of the solution to (5.3)

has non-zero entries corresponding only to columns in Y sampled from S`. We say that

the subspace detection property holds if there is a non-empty interval of values of λ for

which the subspace detection property with parameter λ holds.

The above definition states that ci does not contain any entries corresponding to

subspaces that xi was not drawn from. If the ci are non-zero and the subspace detection

property holds, we should achieve low clustering error. In practice, as long as the false

positive entries of ci much smaller than the true positives, and we have enough true

positives, we will achieve low clustering error. We will find conditions for which the

subspace detection property holds and the ci are non-trivial.

76

5.4 Mathematical Perspectives and Summary of Re-

sults

We somehow wish to show that when solving (5.3), we get a matrix C with the subspace

detection property. As it turns out, we will be able to use duality in optimization to do so.

Important duality techniques will allow us to show that if there are dual vectors satisfying

certain geometric conditions, then the subspace detection property will hold. Ensuring

that these dual vectors satisfy the desired geometric properties hold will constitute the

bulk of our work.

These dual vectors will be defined in terms of dual norms and the dual optimization

problem (5.3), while the geometric conditions will involve bounding the inner product

of corrupted observations x and these dual vectors. We also require the use of notions

such as subspace incoherence. This is similar, but notably different, to the notion of

subspace incoherence in [86]. This concept will measure how aligned a given subspace

is with the corrupted observations drawn from other subspaces. We will also require

from convex analysis, such as the inradius of a convex body. This will be used to

control geometric properties of the dual direction. The convex analysis comes about

since both the primal and dual problem in LS-SSC are convex, and therefore have

important underlying geometric properties we can analyze. These concepts all control

the geometry underlying the true observations y, the noise z, and their relation to the

dual directions. This allows us to derive the following result concerning LS-SSC. This is

an informal version of Theorem 6.6 below.

Theorem 5.2. Suppose we are given X = Y + Z where Y comes from a union of

subspaces model and each column of Z has `2 norm bounded by an explicit function of

77

the configuration of subspaces and the placement of true samples on subspaces. Then

there is an explicit interval of λ for which LS-SSC returns no false positives.

When the y are drawn by some random process, we would like to derive high-

probability results on whether LS-SSC satisfies the theorem above. To do so, we use

theory from high-dimensional statistics and geometric functional analysis. We show in

Theorem 6.7 below that if the subspaces are drawn according to the uniform measure

on all d-dimensional subspaces (in other words, according to the standard measure on

the associated Grassmannian) when d is not too large, and the noise obeys a geometric

bound on its size, then LS-SSC will succeed with high probability.

To further analyze the setting that we have missing data, we can draw connections

between the entry-wise zero fill of a vector with missing data to taking a random pro-

jection of a vector on to a lower-dimensional axis-aligned subspace. We can then apply

Theorem 6.7 and results about the behavior of random vectors under such projections

to derive the following theorem. This is an informal version of Theorem 6.8 below.

Theorem 5.3. Assume that Y is an n × N matrix whose columns are generated uni-

formly at random from a number of d-dimensional subspaces chosen uniformly at ran-

dom. Suppose we are given an incomplete version X of Y where zeros have been filled

into the missing locations. If d ≤ Õ(n/ logN) and each column is missing at most

Õ(n/d) entries, then there is an explicit interval of λ for which LS-SSC returns no false

positives with high probability.

Here Õ hides a logarithmic dependence on the number of samples drawn from each

subspace.

78

Chapter 6

Subspace Clustering with Missing

and Corrupted Data

Recipe 9: Gougères

Ingredients

• 1
2 cup whole milk

• 1
2 cup water

• 1 stick butter

• 1
2 teaspoon salt

• 1 cup flour

• 5 eggs

• 1 1
2 cups coarsely grated Gruyère

cheese

Preparation

1. Preheat oven to 425◦ F. Line two bak-

ing racks with parchment paper.

2. Bring milk, water, butter, and salt to

a rapid boil. Add flour and lower heat

to medium-low. Whisk until a dough

comes together.

3. Turn dough out into bowl. Add eggs

one at a time and beat until the dough

is thick and shiny. Beat in grated

cheese.

4. Spoon 1 tablespoon of dough on to the

baking racks for each gougère. Put

racks in oven and turn temperature

down to 375◦ F. Bake for 12 minutes,

rotate pans, then bake for another 12

minutes.

79

6.1 Preliminaries

6.1.1 Dual Programs and Convex Geometry

Let Y (`) ∈ Rn×N` denote the submatrix of columns drawn from S`. We let X(`) and Z(`)

denote the corresponding column submatrices of X and Z w. Let d` be the dimension of

S` and let N` denote the number of columns in Y drawn from S`. We define κ` = N`/d`.

For a matrix A ∈ Rn×m, we let A−i denote the n × (m − 1) submatrix formed by

removing the ith column. We let Y ⊆ Rn denote the set of columns of Y and let Y(`)

be the set of columns in X corresponding to S(`). We define X and X (`) analogously.

For a matrix A, let SC(A) denote the symmetrized convex hull of its columns. If

A has columns a1, . . . , an, then SC(A) is conv(±a1, . . . ,±an). We write Q(`)
−i to denote

SC(Y (`)
−i). Finally, we require some definitions from convex analysis.

Definition 6.1. Given a set P ⊆ Rd, the polar set P◦ of P is defined as

P◦ = {y ∈ Rd|〈x, y〉 ≤ 1 for all x ∈ P}.

Note that P◦ is a convex region.

Definition 6.2. For any closed polytope P, we let r(P) denote the inradius of P. This

is defined as the radius of the largest Euclidean ball that can be inscribed in P.

Definition 6.3. For any closed polytope P and subspace S, we let rS(P) denote the

relative inradius of P with respect to S. This is defined as the radius of the largest disk

in S that can be inscribed in P.

80

Suppose P ⊆ Rn is symmetric and convex. Here symmetric means that P = −P .

Note that for such polytopes, the largest inscribed ball will necessarily be centered at 0.

This follows from the fact that if a ball B of radius r can be inscribed into P , then by

symmetry, so can −B. Taking the convex hull of B ∪ −B, we necessarily contain the

ball of radius r centered at 0.

Let Br denote the Euclidean ball centered at 0 of radius r in Rn. Then for P

symmetric and convex, we have

r(P) = sup{r : Br ⊆ P}.

rS(P) = sup{r : Br ∩ S ⊆ P}.

We now define the circumradius of such P .

Definition 6.4. For any closed polytope P, the relative circumradius of P, denoted

R(P) is the radius of the Euclidean ball containing P.

Definition 6.5. For any closed polytope P, the relative circumradius of P, denoted

R(P) is the radius of the smallest disk in S containing P.

Using the same notation as above, and again assuming P is symmetric and convex,

we have

R(P) = inf{r : Br ⊇ P}.

RS(P) = inf{r : Br ∩ S ⊇ P}.

For notational convenience, we will define

r` := min
i:xi∈X`

rS`
(Q(`)
−i).

R` := max
i:xi∈X`

RS`
(Q(`)
−i).

81

6.1.2 Dual Directions and Incoherence

Given a vector x and a matrix A, we define an optimization problem denoted P (x,A, λ)

as

min
c,e
‖c‖1 +

λ

2
‖e‖22 s.t. e = x− Ac, (6.1)

and its Lagrangian dual D(x,A, λ) is given by

max
ν
〈x, ν〉 − 1

2λ
‖ν‖22 s.t. ‖ATν‖∞ ≤ 1. (6.2)

The optimization problem for LS-SSC in (5.3) is equivalent to solving P (xi, X−i, λ)

for i = 1, . . . , N . We will use D to analyze the geometry underlying our problem. For a

given x,A, λ, let ν be the solution to D(x,A, λ). If there are multiple solutions, select

the one with the smallest `2 norm. The corresponding dual direction v is defined by

v(x,A, λ) = ν/‖ν‖2.

Define

v
(`)
i := v(x

(`)
i , X

(`)
−i , λ) and V (`) := [v

(`)
1 , . . . , v

(`)
N`

].

We say that the set X` is µ-incoherent with respect to the set X\X (`)
−i if

µ ≥ µ(X`) := max
y∈Y\Y(`)

‖(V (`))Ty‖∞. (6.3)

For notational convenience, we will often write µ` for µ(X`). This parameter µ is

referred to as the subspace incoherence. It is a measure of the alignment between the

true observations Y(i) from each subspace Si and the corrupted observations X (j) from

Sj for j 6= i. Intuitively, the smaller µ is, the less aligned Y(i) and X (j) are. If µ

is small enough, then it should be easier to group observations from distinct subspaces

into distinct clusters. Below, we give a pictorial explanation of the subspace incoherence.

82

Figure 10: The dual direction
v(x

(`)
i , X

(`)
−i , λ), where x

(`)
i is a cor-

rupted version of the true observa-
tion y

(`)
i .

Figure 11: The subspace incoherence µ`
is the radius of the smallest sphere in the
span of X(`) containing all projections of
y ∈ Y\Y(`) onto the polytope determined
by the dual directions.

This definition of subspace incoherence is a generalization of the subspace incoherence

defined by [86] to the noisy setup described. If there is no noise in the samples then

for λ sufficiently large these definitions of subspace incoherence will specialize to the

definition in [86].

6.2 Main Results

6.2.1 Deterministic Model

Consider a matrix of samples Y coming from some fixed subspaces, and let Z be a

deterministic noise matrix. We observe X = Y +Z. We assume that each column of X

has at least 1 non-zero entry. Define

δ = max
i
‖zi‖2.

83

We will characterize how large δ can be for the subspace detection property to hold. For

ease of analysis we assume, as in [86], that each column y of Y lies on the unit sphere.1

The following theorem gives conditions on the subspaces and noise under LS-SSC will

have the subspace detection property and a non-trivial output. Recall that we defined

r` := min
i:xi∈X`

rS`
(Q(`)
−i).

µ` := µ(X`).

We will also define µ := max` µ` and r := min` r`.

Theorem 6.6 (Deterministic model criteria). Suppose that

δ ≤ r − µ
5

(6.4)

and λ lies in the non-empty interval

5

2r + 3µ
< λ <

15

2r + 8µ
. (6.5)

Then the subspace detection property with parameter λ will hold. Moreover, we are

guaranteed that each ci found in (5.3) will be non-trivial.

This theorem gives conditions that guarantee when ci will not have any false positives.

It then refines this to find λ for which the ci will also be non-trivial. In fact, we will

show more generally that it suffices to have

δ ≤ r` − µ`
5

for all `. When δ = 0, this latter condition reduces to having µ` < r` for all `, which is

the same deterministic criteria as in [86].

1The results below all generalize to the case that Y is unnormalized. The results will depend on the
gap between the largest and smallest norm of columns in Y .

84

We will refer to the condition in (6.4) as the geometric separation condition. We

will show that under random model assumptions, the geometric separation condition will

hold with high probability.

6.2.2 Random Model

In the random model, we fix dimensions d` of each subspace S`. We assume that S`

is chosen uniformly at random among all subspaces of dimension d` and that the S`

are chosen independently. Note that the collection of all d`-dimensional subspaces of

Rn form a compact smooth manifold called the Grassmannian. The Grassmannian has

an associated measure. Standard properties of the Grassmannian and its associated

measure (referred to as the Haar measure) show that we can indeed sample uniformly

from this space [65].

For each `, we pick N` = κ`d` points yi on the intersection of the unit sphere and S`.

We then add a noise matrix Z. Our only assumption on Z is that for columns yi and yj

drawn from distinct subspaces, zi is independent to yj. In other words, the noise added

to the samples in one subspace is independent to the observations in other subspaces.

As above, we define

δ := max
i
‖zi‖2.

The theorems below give conditions on the noise under which the subspace detection

property holds with high probability.

Theorem 6.7 (Random model criteria). There are absolute constants c1, c2 such that,

if for all `,

d` ≤
c1ρ(κ`)

2 log(κ`)n

logN
(6.6)

85

and

δ ≤ c2ρ(κ`)

√
log(κ`)

d`
. (6.7)

then with probability at least

1− 2

N
−

L∑

`=1

N`e
−√κ`d`

the subspace detection property holds and the output of LS-SSC is non-trivial for all λ

satisfying

10

9

√
n

24 logN
< λ <

15

6

√
n

24 logN
.

Here, ρ(κ) is a constant depending only on κ. It is the same constant ρ(κ) as that in

[86]. This work also shows that all κ sufficiently large we can take ρ(κ) to be a constant.

Moreover, in most reasonable scenarios, we can treat ρ(κ`) as a small constant.

It is also worth noting that the condition that d` ≤ c1ρ(κ`)
2 log(κ`)n/ logN is, up to

constants, the same as the condition on d` required for subspace clustering to succeed

without noise [86]. Therefore, for δ sufficiently small, we recover the sufficient condition

in [86] for subspace detection under the same random model.

6.2.3 Missing Data Model

As in the random model, we assume that the L subspaces are chosen independently and

uniformly at random, and that the points yi are drawn randomly from the unit ball in

S`. Our data matrix X satisfies X = Y +Z where, Zij = −Yij if we do not view Yij and

zero otherwise. In other words, X is the entry-wise zero fill of Y in the missing entries.

We do not assume that we know the locations of the missing entries. A zero entry in

X could be because we do not observe that entry, or because there is a zero in Y there.

This allows LS-SSC to be used in more general settings such as with presence-only data.

86

For a vector v, let ‖v‖0 denote the number of non-zero entries in v. We assume that

for all yi ∈ S`, ‖zi‖0 ≤ m`. Our only assumptions on the missing data locations are that

for any column yi, the location of the missing entries in yi are chosen independently from

all columns of Y . In other words, the missing entry locations are chosen independently

from Y . The following theorem gives conditions under which LS-SSC succeeds in this

model.

Theorem 6.8 (Missing data criteria). There are absolute constants c1, c3 such that if

for all `

d` ≤
c1ρ(κ`)

2 log(κ`)n

logN
, (6.8)

and the number of missing entries m` in any column drawn from S` satisfies

m` ≤M` := c3ρ(κ`)
2 log(κ`)

n

d`
,

then with probability at least

1− 2

N
−

L∑

`=1

N`e
−√κ`d` − 2

L∑

`=1

N`e
−M`/16,

the subspace detection property holds and the output of LS-SSC is non-trivial for all λ

satisfying

10

9

√
n

24 logN
< λ <

15

6

√
n

24 logN
.

Here, the constant c1 is the same as in Theorem 6.7. This condition says that if the

dimension d of our subspaces obey the same condition required for SSC without noise to

succeed, then LS-SSC will succeed in the presence of O(n/d) missing entries per column

with high probability. If d is constant with respect to n, then this says that LS-SSC can

tolerate a constant fraction of missing entries in each column.

87

6.3 Dual Certificates and the Deterministic Model

In this section we will analyze the primal and dual problems associated to LS-SSC. In

particular, we will show that the existence of certain solutions to the associated dual

problem will guarantee that the solutions to LS-SSC will satisfy the subspace detection

property. This will allow us to prove Theorem 6.6 above.

6.3.1 Dual Certificates

Recall that the optimization problem in LS-SSC is equivalent to solving, for all i,

P (xi, X−i, λ). In order to guarantee that the solution (c, e) to these problems contains

no false positives, we consider an idealized problem. That is, we analyze P (xi, X
(`)
−i , λ).

While we cannot solve this problem in practice, we show below that as long as the

solution to this idealized problem and its dual satisfy certain conditions, the solution

to P (xi, X−i, λ) will satisfy the subspace detection property. This follows from similar

techniques to those in [96]. The geometric separation condition guarantees the existence

of these dual certificates to the subspace detection property.

We are interested in the support of the solution c∗ of P (xi, X−i, λ). We want c∗ to

have support only on the columns of X−i coming from S`. In order to guarantee this,

we prove the following lemma giving conditions that guarantee that c∗ has the desired

support.

Lemma 6.9. Let A ∈ Rn×N , x ∈ Rn be such that there are vectors c, e, ν and sets

S ⊆ T ⊆ {1, . . . , N} such that e = x− Ac, c has support S, and ν satisfies:

1. ATSν = sgn(cS)

88

2. ν = λe

3. ‖ATT∩Scν‖∞ ≤ 1

4. ‖ATT cν‖∞ < 1

Then any optimal solution (c∗, e∗) to P (x,A, λ) satisfies c∗T c = 0.

Proof. Let (c∗, e∗) be a solution to P1(x,A, λ). Then we have:

‖c∗‖1 +
λ

2
‖e∗‖22

= ‖c∗S‖1 + ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e∗‖22

≥ ‖cS‖1 + 〈sgn(cS), c∗S − cS〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e∗‖22. (6.9)

We now wish to find a lower bound for λ
2
‖e∗‖22 involving e. Define

f(e) = λ(−1

2
eT e+ eT e∗).

Then f(e∗) = λ
2
‖e∗‖22. Simple calculus shows that this is the maximum value of f and is

only achieved by e∗. Therefore, for any other e, f(e) ≤ f(e∗). In particular this implies

λ

2
‖e∗‖22 = f(e∗)

≥ f(e)

= λ(−1

2
eT e+ eT e∗)

=
λ

2
‖e‖22 + 〈λe, e∗ − e〉.

89

Using this fact and Assumptions 1 and 2 on ν in (6.9), we have

‖c∗‖1 +
λ

2
‖e∗‖22

≥ ‖cS‖1 + 〈ν,AS(c∗S − cS)〉+ ‖c∗T∩Sc‖1 + ‖c∗T c‖1 +
λ

2
‖e‖22 + 〈ν, e∗ − e〉

≥ ‖cS‖1 +
λ

2
‖e‖22 + ‖c∗T∩Sc‖1 − 〈ν,AT∩Scc∗T∩Sc〉+ ‖c∗T c‖1 − 〈ν,AT cc∗T c〉

+ 〈ν,A(c∗ − c) + e∗ − e〉. (6.10)

Since (c∗, e∗) and (c, e) are feasible, we have

Ac∗ + e∗ = x = Ac+ e

=⇒ A(c∗ − c) + e∗ − e = 0. (6.11)

Combining (6.10) and (6.11), and using the fact that c has support S so cS = c, we have

‖c∗‖1 +
λ

2
‖e∗‖22

≥ ‖c‖1 +
λ

2
‖e‖22 + ‖c∗T∩Sc‖1 − 〈ν,AT∩Scc∗T∩Sc〉+ ‖c∗T c‖1 − 〈ν,AT cc∗T c〉.. (6.12)

By Assumption 3 on ν, we have

〈ν,AT∩Scc∗T∩Sc〉 = 〈ATT∩Scν, c∗T∩Sc〉

≤ ‖ATT∩Scν‖∞‖c∗T∩Sc‖1

≤ ‖c∗T∩Sc‖1. (6.13)

By simple norm properties, we have

‖c∗T c‖1 − 〈ν,AT cc∗T c〉 = ‖c∗T c‖1 − 〈ATT cν, c∗T c〉

≥ ‖c∗T c‖1 − ‖ATT cν‖∞‖c∗T c‖1

≥ (1− ‖ATT cν‖∞)‖c∗T c‖1 (6.14)

90

Combining (6.12), (6.13), and (6.14), we find

‖c∗‖1 +
λ

2
‖e∗‖1 ≥ ‖c‖1 +

λ

2
‖e‖1 + (1− ‖ATT cν‖∞)‖c∗T c‖1.

By Assumption 4 on ν, we know that (1 − ‖ATT cν‖∞) > 0. By optimality of c∗, e∗ for

P (x,A, λ), this implies that ‖c∗T c‖1 = 0 and so c∗T c = 0. Therefore, c∗ has support

contained in T .

Let T ⊆ {1, . . . , N} denote the set of columns that correspond to S`. We wish to

guarantee that the solution (c∗, e∗) to P (xi, X−i, λ) has c∗ with support contained in T .

By Lemma 6.9, it suffices to exhibit, for each i, vectors ci, ei, νi satisfying the conditions

of this lemma when we take A = X−i and x = xi.

Therefore, we wish to show that for all i, there are vectors ci, ei such that X−ici−xi =

ei with ci having support contained in T , and that satisfy conditions 1-4 in Lemma 6.9.

We will construct (ci, ei, νi) in the following way. Let (c, e) solve P (xi, X
(`)
−i , λ). To

see that such a (c, e) exists, it suffices to show that the optimization problem is feasible.

This follows from the fact that we can take any c̃ and let ẽ = xi−X(`)
−i c̃. Note that since

we have no inequality constraints, Slater’s condition holds and so does strong duality.

The dual is also strictly feasible since ν̃ = 0 will satisfy ‖(X(`)
−i)

Tν‖∞ < 1.

We define ci to be 0 in all columns outside of X
(`)
−i and let it equal c in columns

corresponding to X
(`)
−i . Let ei = e. Note that X−ici − xi = ei, so this is a feasible point

of P (xi, X−i, λ).

We let νi denote the dual vector to c guaranteed by strong duality. For ease of

notation, we will now fix i and let ν equal νi. That is, ν is the solution to D(xi, X
(`)
−i , λ).

In particular, ν satisfies

‖(X(`)
−i)

Tν‖∞ ≤ 1.

91

Let S denote the support of c. This implies that for A = X−i, we have

‖ATT∩Scν‖∞ ≤ 1.

Therefore, Assumption 3 of Lemma 6.9 holds. Complementary slackness implies the

following conditions:

(X
(`)
−i)

T
Sν = sgn(cS), (6.15)

ν = λe. (6.16)

Therefore, (ci, ei, ν) also satisfy Assumptions 1 and 2 of Lemma 6.9. The remaining

assumption we must show is Assumption 4. Therefore, to prove the subspace detection

property holds, it suffices to show that for each column x of X not in S`, the following

condition satisfied:

|〈x, ν〉| < 1. (6.17)

It therefore suffices to show that the conditions in Lemma 6.17 imply that |〈x, ν〉| < 1

for all x ∈ X\X ` and ν in the statement of the lemma.

Fix x ∈ X\X `, where x = y+ z. Here, y is the true vector and z is the noise vector.

We wish to give a condition under which |〈x, ν〉| < 1. Note that we have

|〈x, ν〉| ≤ |〈y, ν〉|+ |〈z, ν〉|. (6.18)

We bound these two terms separately. For the first, note that

|〈y, ν〉| = ‖ν‖2
∣∣∣∣〈y,

ν

‖ν‖2
〉
∣∣∣∣ . (6.19)

By the definition of µ(X (`)), we have

∣∣∣∣〈y,
ν

‖ν‖2
〉
∣∣∣∣ ≤ µ(X (`)). (6.20)

92

By Cauchy-Schwarz, we have

|〈z, ν〉| ≤ δ‖ν‖2. (6.21)

Combining this we have,

|〈x, ν〉| ≤ (µ(X`) + δ)‖ν‖2. (6.22)

Therefore, we have the following result.

Lemma 6.10. Suppose that for all i and ` where (ci, ei) solve P (xi, X
(`)
−i , λ) and ν is the

corresponding solution to D(xi, X
(`)
−i , λ), we have

(µ(X`) + δ)‖ν‖2 < 1.

Then the subspace detection property with parameter λ holds.

In the next section we will bound ‖ν‖2 in order to better utilize Lemma 6.10.

6.3.2 Bounding ‖ν‖2

We now wish to bound ‖ν‖2. We will do this by bounding the norm of its projection on

to S` and the norm of its part that is orthogonal to S`.

Recall that the columns of Y (`) all lie in the subspace S`. Let ProjS`
denote the

projection operator on to S`. We define

ν1 := Proj
S`

ν.

ν2 := ν − ν1.

We will bound ‖ν1‖2, ‖ν2‖2 separately and use the fact that by orthogonality, ‖ν‖2 =

‖ν1‖2 + ‖ν2‖2. To bound ‖ν1‖2, we will require the following fact from convex geometry.

93

Lemma 6.11. Let Q be the symmetrized convex hull of a set of points Y ⊆ Rn spanning

a subspace S of dimension d. For each y ∈ Y, let x = y + z for z ∈ S with ‖z‖2 ≤ δ.

Denote the collection of such x as X and let T denote its symmetrized convex hull.

Suppose that rS(Q) > δ ≥ 0. Then

rS(T) ≥ rS(Q)− δ.

Proof. Note that since each y, z ∈ S, each x ∈ S. Therefore, Q and T both lie in S.

We can perform a change of coordinates that preserves all distances between points in

S such that Q spans the first d dimensions of Rn. Then note that the relative inradius

rS(Q) equals the absolute inradius r(Q) in Rd. The same occurs for T . It therefore

suffices to show that for Q and T ⊆ Rd, r(T) ≥ r(Q)− δ.

Since Q and T are symmetric and convex, it suffices to show that the ball B of radius

r(Q) − δ centered at the origin is contained within T . Consider a face F of Q. There

are vertices y1, . . . , yk such that

F =

{
k∑

i=1

yiwi

∣∣∣∣0 ≤ wi ≤ 1,
k∑

i=1

wi = 1

}
.

Since F is on the boundary of Q, every point y ∈ F satisfies ‖y‖2 ≥ r(Q). Let x1, . . . , xk

denote the points in T corresponding to the yi (that is, xi = yi + zi for some zi with

‖zi‖2 ≤ δ). Define F ′ by

F ′ =

{
k∑

i=1

xiwi

∣∣∣∣0 ≤ wi ≤ 1,
k∑

i=1

wi = 1

}
.

94

Now suppose x ∈ F ′. Then we have

‖x‖2 =

∥∥∥∥∥
k∑

i=1

xiwi

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

yiwi + ziwi

∥∥∥∥∥
2

≥

∥∥∥∥∥
k∑

i=1

yiwi

∥∥∥∥∥
2

−
k∑

i=1

wi‖zi‖2

≥ r(Q)−
k∑

i=1

wiδ

≥ r(Q)− δ.

Let S be the union of F ′ over all faces F of Q. Then S is the boundary of some closed

(not necessarily convex, possibly self-intersecting) polytope P containing the origin.

Moreover, since every point in S has norm at least r(Q)−δ, we know that P contains B.

Since each vertex xi of each F ′ is in T and T is convex, we know that P ⊆ T . Therefore,

r(T) ≥ r(P) ≥ r(Q)− δ.

We will also use the following lemma about the relation between the relative inradius

and circumradius of a convex body. This lemma can be bound in [15].

Lemma 6.12 ([15]). For any symmetric convex polytope T ,

r(T)R(T ◦) = 1.

We can then use this to derive the following lemma about the relative inradius of a

symmetric convex polytope.

95

Lemma 6.13. Suppose that T is a symmetric convex polytope that lies in a subspace S.

Then

rS(T)RS(T ◦ ∩ S) = 1.

Proof. Suppose T ⊆ Rn and S has dimension d. After performing an appropriate

distance-preserving change of coordinates, we can assume that S is the span of the

elements e1, . . . , ed where ei denotes the ith vector of the standard basis. Let π : Rn → Rd

be the map that sends a vector (x1, . . . , xn) to (x1, . . . , xd). Let T ′ = π(T). Note

that this is the same convex polytope as T , but in Rd instead of Rn. In particular,

rS(T) = r(T ′).

Moreover, simple linear algebra shows that π(T ◦) = π(T ◦∩S) = (T ′)◦. In particular,

RS(T ◦ ∩ S) = R((T ′)◦). By Lemma 6.12, we then have

rS(T)RS(T ◦ ∩ S) = r(T ′)R((T ′)◦) = 1.

We can then show the following Lemma.

Lemma 6.14.

‖ν1‖2 ≤
1 + δ‖ν2‖2
rS`

(Q(`)
−i)− δ

.

Proof. Since ν is a feasible point of D(xi, X
(`)
−i , λ), we know that

‖(X(`)
−i)

Tν‖∞ ≤ 1.

96

In particular, for any column x = y + z of X
(`)
−i we have

|〈x, ν〉| ≤ |〈y, ν1〉+ 〈y, ν2〉+ 〈z, ν1〉+ 〈z, ν2〉|

= |〈y, ν1〉+ 〈Proj
S`

z, ν1〉+ 〈z, ν2〉|

≤ 1.

Here we used the fact that ν1 ∈ S` while ν2 ∈ S⊥` . Since y ∈ S`, we have ProjS`
x =

y + ProjS`
z. Therefore,

|〈Proj
S`

x, ν1〉| ≤ 1 + |〈z, ν2〉| ≤ 1 + δ‖ν2‖2.

Therefore, ∥∥∥∥(Y
(`)
−i + Proj

S`

Z
(`)
−i)

T ν1
1 + δ‖ν2‖2

∥∥∥∥ ≤ 1. (6.23)

Let M = Y
(`)
−i + ProjS`

Z
(`)
−i and let T = SC(M). Recall that this is the symmetrized

convex hull of the columns of T . Then (6.24) implies that

ν1
1 + δ‖ν2‖2

∈ T ◦. (6.24)

Since ν1 ∈ S`, the circumradius of T ◦ ∩ S` relative to S` provides a bound on the

norm of ν1/(1 + δ‖ν2‖2). Therefore,

‖ν1‖2 ≤ RS`
(T ◦ ∩ S`)(1 + δ‖ν2‖2). (6.25)

We now wish to bound RS`
(T ◦ ∩ S`). By Lemma 6.13, we have

RS`
(T ◦ ∩ S) =

1

rS`
(T)

.

It now suffices to give a lower bound on rS`
(T). Recall that T is the symmetrized

convex hull of the columns of Y
(`)
−i , perturbed by ProjS`

Z
(`)
−i . Since each column z has

97

norm at most δ, we can apply Lemma 6.11, which then implies

rS`
(T) ≥ rS`

(SC(Y (`)
−i))− δ = rS`

(Q(`)
−i)− δ.

Therefore,

‖ν1‖2 ≤
1 + δ‖ν2‖2
r(Q(`)

−i)− δ
.

We bound ‖ν2‖2 in the following lemma.

Lemma 6.15.

‖ν2‖2 ≤ λδ

(
1

rS`
(Q(`)
−i)

+ 1

)
.

Proof. Recall that ν is a solution of D(xi, X
(`)
−i , λ), and that by (6.16), we have ν = λei.

Therefore, ν = λ(xi−X(`)
−i ci). In the following, we will let cij denote the jth entry of ci.

Therefore,

‖ν2‖2 = ‖Proj
S⊥`

ν‖2

= λ‖Proj
S⊥`

(xi −X(`)
−i ci)‖2

= λ‖Proj
S⊥`

zi + Proj
S⊥`

Z
(`)
−i ci‖2

≤ λ‖Proj
S⊥`

zi‖2 + λ‖Proj
S⊥`

Z
(`)
−i ci‖2

≤ λδ + λ

(∑

j

|cij|‖Proj
S⊥`

zj‖2

)

≤ λδ + λ
∑

j

|cij|δ

≤ λδ(1 + ‖ci‖1).

98

We wish to bound ‖ci‖1. Note that for any other feasible point (ĉi, êi) of P (xi, X−i, λ),

by optimality we must have

‖ci‖1 +
λ

2
‖ei‖22 ≤ ‖ĉi‖1 +

λ

2
‖êi‖22.

By (6.16), we have λei = ν. Therefore,

λ

2
‖êi‖22 =

1

2λ
‖ν‖22 ≥

1

2λ
‖ν2‖22.

Therefore,

‖ν2‖2 ≤ λδ(1 + ‖ci‖1)

≤ λδ + λδ

(
‖ĉi‖1 +

λ

2
‖êi‖22 −

1

2λ
‖ν2‖22

)

=⇒ ‖ν2‖2 +
δ

2
‖ν2‖22 ≤ λδ + λδ

(
‖ĉi‖1 +

λ

2
‖êi‖22

)
. (6.26)

We now wish to construct (ĉi, êi) such that we can bound ‖ĉi‖1 +
λ

2
‖êi‖22. We will

do this by letting ĉi be the solution to

min
c
‖c‖1 s.t. yi = Y

(`)
−i c. (6.27)

To make this point feasible, we define

êi = zi − Z(`)
−i ĉi.

Since we assume that Y is self-expressive, we know that the optimization problem

used to define ĉi has a non-empty feasible set. Therefore, it satisfies strong duality. Let

ν̂ be the corresponding solution to the dual problem to (6.27) of smallest norm, that is

ν̂ solves

max
ν
〈yi, ν〉 s.t. ‖(Y (`)

−i)Tν‖∞ ≤ 1. (6.28)

99

Note that if ν is optimal in (6.28) then so is ProjS`
ν as this does not alter the

objective nor does it violate any constraint, as yi and the columns of Y
(`)
−i all lie in S`.

Therefore, if we take ν̂ to be the solution of the smallest norm, we must have ν̂ ∈ S`.

We also know by (6.28) that ν̂ ∈ (Q(`)
−i)
◦. Therefore,

ν̂ ∈ (Q(`)
−i)
◦ ∩ S`.

By Lemma 6.13,

‖ν̂‖2 ≤ RS`
((Q(`)

−i)
◦ ∩ S`)

=
1

rS`
(Q(`)
−i)

.

By strong duality, we have

‖ĉi‖1 = 〈yi, ν̂〉 ≤ ‖ν̂‖2‖yi‖2 ≤
1

rS`
(Q(`)
−i)

. (6.29)

We can bound ‖êi‖22 by using the fact that

‖êi‖2 ≤ ‖zi‖2 +
∑

j

|ĉij|‖zj‖ ≤ δ(1 + ‖ĉ1‖1). (6.30)

Plugging (6.30) into (6.26) we get

‖ν2‖2 +
δ

2
‖ν2‖22 ≤ λδ(1 + ‖ĉi‖1) +

δ

2
(λδ(1 + ‖ĉi‖1))2 . (6.31)

Note that the function f(x) = x+ δ
2
x2 monotonically increases for x ≥ 0. Note that

(6.31) is equivalent to

f(‖ν2‖2) ≤ f
(
λδ(1 + ‖ĉi‖1)

)
.

By (6.29) we have

‖ν2‖2 ≤ λδ(1 + ‖ĉi‖1) ≤ λδ

(
1

rS`
(Q(`)
−i)

+ 1

)
.

100

Combining the bounds on ‖ν1‖2, ‖ν2‖2 we get the following lemma.

Lemma 6.16.

‖ν‖2 ≤
1 + λδ2

(
1

rS`
(Q(`)
−i)

+ 1

)

rS`
(Q(`)
−i)− δ

+ λδ

(
1

rS`
(Q(`)
−i)

+ 1

)
.

6.3.3 Towards a Deterministic Criteria

We can now make the first step towards a deterministic criteria for the success of LS-

SSC. We will show the following lemma concerning when the subspace detection property

holds.

Lemma 6.17. Suppose that for all ` we have

2λδ <
r` − µ` − 2δ

µ` + δ
. (6.32)

Then the subspace detection property with parameter λ holds.

Proof. By Lemma 6.10, it suffices to show that for all i and ` such that yi ∈ S`, we have

(µ(X`) + δ)‖ν‖2 < 1. (6.33)

By Lemma 6.16, we have

(µ(X`) + δ)‖ν‖2 ≤ (µ(X`) + δ)

1 + λδ2
(

1

rS`
(Q(`)
−i)

+ 1

)

rS`
(Q(`)
−i)− δ

+ λδ

(
1

rS`
(Q(`)
−i)

+ 1

)

 .

Rearranging, (6.33) holds if

λδ2

(
1

rS`
(Q(`)
−i)

+ 1

)
+ λδ

(
1

rS`
(Q(`)
−i)

+ 1

)
(rS`

(Q(`)
−i)− δ) <

rS`
(Q(`)
−i)− δ

µ(X`) + δ
− 1.

101

Manipulating further, this is equivalent to

λδ

(
1

rS`
(Q(`)
−i)

+ 1

)
(δ + rS`

(Q(`)
−i)− δ) <

rS`
(Q(`)
−i)− µ(X`)− 2δ

µ(X`) + δ

⇐⇒ λδ(1 + rS`
(Q(`)
−i)) <

rS`
(Q(`)
−i)− µ(X`)− 2δ

µ(X`) + δ
.

Note that since r(Q(`)
−i) ≤ 1, this is satisfied if

2λδ <
rS`

(Q(`)
−i)− µ(X`)− 2δ

µ(X`) + δ
.

Since the right-hand side decreases as rS`
(Q(`)
−i) decreases, it suffices to satisfy this con-

dition for i minimizing rS`
(Q(`)
−i), which is how we defined r`. Also using the notation

µ` = µ(X`), the subspace detection property holds if for all `,

2λδ <
r` − µ` − 2δ

µ` + δ
.

Note that while this guarantees the subspace detection property, it does not yet

guarantee that the output c will be non-trivial. We will show how to set λ appropriately

to avoid this scenario in the following.

6.3.4 Finding Admissible λ

In this section, we prove a lemma that gives a bound on λ for which the output vector c

of P (xi, X−i, λ) is non-trivial. We say that such λ are admissible. This lemma was first

stated in [96], though their proof leaves out a few minor details. For completeness, we

restate the lemma and provide a detailed proof.

102

Lemma 6.18. If for all `,

λ >
1

r` − 2δ − δ2
,

then the solution (c, e) to P (xi, X−i, λ) satisfies c 6= 0.

Proof. Suppose that the solution (c, e) to P (xi, X−i, λ) satisfies c = 0. Then e = xi −

Xic = xi. Strong duality guarantees a dual vector ν that is feasible for D(xi, X−i, λ).

We will show that for λ large enough, the vector (0, xi) has dual ν that does not satisfy

the condition ‖XT
−iν‖∞ ≤ 1.

Assume otherwise. By complementary slackness, ν = λe = λxi. Therefore,

‖XT
−iν‖∞ = λmax

j 6=i
|〈xj, xi〉|.

Therefore, for any j 6= i we then have

‖XT
−iν‖∞ ≥ λ|〈xj, xi〉|

= λ

∣∣∣∣〈yj, yi〉+ 〈yj, zi〉+ 〈zj, yi〉+ 〈zj, zi〉
∣∣∣∣

≥ λ

(
|〈yj, yi〉| − |〈yj, zi〉| − |〈zj, yi〉| − |〈zj, zi〉|

)

≥ λ

(
|〈yj, yi〉| − 2δ − δ2

)
.

Therefore,

‖XT
−iν‖∞ ≥ λ

(
‖Y T
−iyi‖∞ − 2δ − δ2

)
.

Restricting to points lying in S`, this implies

‖XT
−iν‖∞ ≥ λ

(
‖(Y (`)

−i)Tyi‖∞ − 2δ − δ2
)
.

To bound this below, we require the following fact from convex analysis.

103

Lemma 6.19. Suppose that Q is the symmetrized convex hull of a set of points {y1, . . . , yM}

lying in a subspace S. Then for any unit vector u ∈ S and any yi,

max
i
|〈yi, u〉| ≥ rS(Q).

Proof. Using the same trick as in the beginning of the proof of Lemma 6.11, it suffices

to show that for Q = SC({y1, . . . , yM}) ⊆ Rn and any unit vector u ∈ Rn,

max
i
|〈yi, u〉| ≥ r(Q).

Fix some unit vector u. Let ∂Q denote the boundary of Q Let v be the point on ∂Q

in the direction of u. Note that if no such vector exists, then r(Q) = 0 necessarily, in

which case the result trivially holds. Since Q is a symmetric convex polytope, v lies on

some face F of Q. Without loss of generality, we can assume that for some m ≤M ,

F =

{
m∑

i=1

yiwi|0 ≤ wi ≤ 1,
m∑

i=1

wi = 1

}
.

Define

k = argmax
1≤j≤m

|〈yj, v〉|.

Therefore,

|〈yk, u〉| =
|〈yk, v〉|
‖v‖2

.

We wish to show that |〈yk, u〉| ≥ ‖v‖2. This is equivalent to showing

|〈yk, v〉| ≥ ‖v‖22.

104

Note that we have

‖v‖22 = vTv

=
m∑

i=1

wi〈yi, v〉

≤
m∑

i=1

wi max
1≤j≤m

|〈yj, v〉|

=
m∑

i=1

wi|〈yk, v〉|

= |〈yk, v〉|.

Therefore, for any unit vector u pointing in the direction of a face F , there is some

vertex yk of F and some point v ∈ F such that

|〈yk, u〉| ≥ ‖v‖2.

Taking a supremum of the left-hand side over all faces F and all vertices of said faces,

and taking an infimum right-hand side over all points on the boundary of Q, we have

max
1≤i≤M

|〈yi, u〉| ≥ min
v∈∂Q
‖v‖2 = r(Q).

Therefore, ‖(Y (`)
−i)Tyi‖∞ ≥ rS`

(Q(`)
−i), so

‖XT
−iν‖∞ ≥ λ(rS`

(Q(`)
−i)− 2δ − δ2).

Taking the minimum of rS`
(Q(`)
−i) over all yi lying in S`, we have

‖XT
−iν‖∞ ≥ λ(r` − 2δ − δ2).

105

Since ‖XT
−iν‖∞ ≤ 1 for feasible ν, if

1

r` − 2δ − δ2
< λ (6.34)

then (0, xi) cannot be optimal P (xi, X−i, λ), as the corresponding ν = λxi satisfies

‖XT
−iν‖∞ > 1.

6.3.5 Proof of Theorem 6.6

For posterity, we write the statement of the theorem here again. Recall that we have

r := min
`
r`.

µ := max
`
µ`.

Theorem 6.20 (Deterministic model criteria). Suppose that

δ ≤ r − µ
5

(6.35)

and λ lies in the non-empty interval

5

2r + 3µ
< λ <

15

2r + 8µ
. (6.36)

Then the subspace detection property with parameter λ will hold. Moreover, we are

guaranteed that each ci found in (5.3) will be non-trivial.

Proof. By Lemma 6.17 and Lemma 6.18, the desired condition will hold if for all `,

2λδ <
r` − µ` − 2δ

µ` + δ
(6.37)

and

1

r` − 2δ − δ2
< λ. (6.38)

106

Note that the right-hand side of (6.37) decreases as r` decreases and as µ` increases.

Therefore, we get a sufficient condition by replacing r` by r and µ` by µ. Further

rearranging, (6.37) becomes

λ <
r−µ
δ
− 2

2(µ+ δ)
. (6.39)

Assuming that δ ≤ r−µ
5

, (6.39) holds if

λ <
3

2

1

µ+ r−µ
5

=
15

2r + 8µ
. (6.40)

For the lower bound on λ, since (6.35) implies δ ≤ r` ≤ 1, a sufficient condition for

(6.38) to hold is that for all `

1

r` − 3δ
< λ. (6.41)

It suffices to show that this holds for r = min` r`. Again using the fact that δ ≤ r−µ
5

,

this holds if

λ >
1

r − 3
5
(r − µ)

=
5

2r + 3µ
. (6.42)

Note that for (6.40) and (6.42) can hold simultaneously if

5

2r + 3µ
<

15

2r + 8µ

⇐⇒ 10r + 40µ < 30r + 45µ.

This holds for 0 ≤ µ < r ≤ 1, completing the proof.

6.4 High-Dimensional Probability and the Random

Model

We now assume the conditions of the random model. We wish to show that under

some condition on the noise level δ, the subspace detection property holds with high

107

probability. Recall that we wish to show the following theorem.

Theorem 6.21 (Random model criteria). There are absolute constants c1, c2 such that,

if for all `,

d` ≤
c1ρ(κ`)

2 log(κ`)n

logN
(6.43)

and

δ ≤ c2ρ(κ`)

√
log(κ`)

d`
. (6.44)

then with probability at least

1− 2

N
−

L∑

`=1

N`e
−√κ`d`

the subspace detection property holds and the output of LS-SSC is non-trivial for all λ

satisfying

10

9

√
n

24 logN
< λ <

15

6

√
n

24 logN
.

Proof. We want to show that with high probability, the condition of Theorem 6.6 holds.

In particular, we want to show that with high probability, we have

δ ≤ r − µ
5

.

To bound the right-hand side from below, we need a lower bound on r and an upper

bound on µ. As previously discussed, the following lemma was proved in [86].

Lemma 6.22 ([86]). For all β ∈ [0, 1],

P

r` ≥ ρ(κ`)

√
β log(κ`)

d`

 ≤ exp(−dβ`N

1−β
`).

Recall that N`

d`
= κ`. Therefore, d`N` = κ`d

2
` . Selecting β = 1

2
and taking a union

bound over all (i, `) such that yi ∈ S`, we get the following lemma:

108

Lemma 6.23.

P
(
∀(i, `) s.t. yi ∈ S` : r(Q(`)

−i) ≥
ρ(κ`)

√
log(κ`)√

2d`

)
≥ 1−

L∑

`=1

N`e
−√κ`d` .

Note that this lemma is equivalent to saying that

P
(
r ≥ min

`
d
ρ(κ`)

√
log(κ`)√

2d`

)
≥ 1−

L∑

`=1

N`e
−√κ`d` .

Next, recall that we define µ` by

µ` = max
y∈Y\Y(`)

1≤i≤N`

|〈v(`)i , y〉|. (6.45)

Here, v
(`)
i is a unit vector by definition. Fix y ∈ Y\Y(`) and some vector yi drawn from

S`. Then the dual direction vi is a unit vector depending only on the samples drawn

from S`. In particular, y is drawn independently from these samples therefore y and

vi are independent. We also know that y has marginal distribution that is uniform on

the unit sphere. This follows from the fact that the subspace Sj from which y is drawn

is selected uniformly among all dj-dimensional subspaces, and y is selected uniformly

at random from the unit ball in Sj. We can therefore use the following consequence of

well-known results concerning spherical cap densities.

Lemma 6.24 ([6]). Let y be a vector uniformly distributed on the unit sphere Sn−1 and

let a be a fixed unit vector on Sn−1. Then for any ε > 0,

P
(
|〈a, y〉| > ε

)
≤ 2 exp

(
−nε

2

2

)
.

Applying Lemma 6.24 with ε =
√

6 logN/n, a = v
(`)
i and the y above, we get:

P
(
|〈v(`)i , y〉| >

√
6 logN

n

)
≤ 2

N3
. (6.46)

Taking a union bound of (6.46) over all such y and pairs (i, `) with yi ∈ S`, we get derive

the following Lemma.

109

Lemma 6.25.

P

(
µ(X`) ≤

√
6 logN

n
, ∀`

)
≥ 1− 2

N
.

In particular, this implies

P

(
µ ≤

√
6 logN

n

)
≥ 1− 2

N
.

By the union bound, Lemmas 6.23 and 6.25 show that with probability at least

1− 2
N
−
∑L

`=1N`e
−√κ`d` , we have that for all `,

r` ≥
ρ(κ`)

√
log(κ`)√

2d`
, µ` ≤

√
6 logN

n
.

Assume that for all `,

d` ≤
ρ(κ`)

2 log(κ`)

48 logN
n. (6.47)

So, with probability at least 1− 2
N
−
∑L

`=1N`e
−√κ`d` ,

r` ≥
ρ(κ`)

√
log(κ`)√

2d`
≥
√

24 logN

n
≥ 2µ`.

In particular, this implies that with the same probability

r ≥
√

24 logN

n
≥ 2µ.

Therefore, with this same probability

r − µ ≥ r

2

and so

r − µ
5
≥ ρ(κ`)

10
√

2

√
log(κ`)√
d`

. (6.48)

If we require

δ ≤ ρ(κ`)

10
√

2

√
log(κ`)√
d`

,

110

then with probability at least 1− 2
N
−
∑L

`=1N`e
−√κ`d` , the geometric separation condition

and therefore the subspace detection property will hold. Taking c1 = 1
48
, c2 = 1

10
√
2
, we

get conditions (6.43) and (6.44).

By the same reasoning as in the proof of 6.6, we can derive the same interval of λ

for which the subspace detection property will hold and the output of LS-SSC will be

non-trivial. We showed in the proof of Theorem 6.6 that this will occur as long as

1

r` − 3δ
< λ <

r`−µ`
δ
− 2

2(µ` + δ)
(6.49)

holds for all `. Above, we showed that with probability at least 1− 2
N
−
∑L

`=1N`e
−√κ`d` ,

under the assumption on d`, we have that for all `,

r` ≥
√

24 logN

n

µ` ≤
√

6 logN

n

δ ≤ 1

5

√
6 logN

n

Note that if we decrease r`, and increase µ`, δ, the interval in (6.49) gets smaller (ie.

it is contained by the previous interval). Using our bound on r`, µ`, δ above and plugging

into 6.49, we find that with the same probability above, the subspace detection property

with parameter λ will hold and the output of LS-SSC will be non-trivial as long as

10

9

√
n

24 logN
< λ <

15

6

√
n

24 logN
. (6.50)

This is a non-empty interval of λ for which LS-SSC has the subspace detection

property and has non-trivial output, with the given probability above.

111

6.5 Random Projections and Missing Data

As noted above, clustering with missing data is a special case of subspace clustering

with additive noise. Let X = Y + Z where each entry Zij either equals −Yij or 0. If

the number of missing entries is not too large, then the corruption matrix Z is relatively

sparse.

Recall that we assume that in each column coming from S`, we have at most m`

missing entries. We make no assumptions on how these missing entries are selected

except that the missing locations are chosen independently from the observations. We

wish to show the following theorem.

Theorem 6.26 (Missing data criteria). There are absolute constants c1, c3 such that if

for all `

d` ≤
c1ρ(κ`)

2 log(κ`)n

logN
, (6.51)

and the number of missing entries m` in any column drawn from S` satisfies

m` ≤M` := c3ρ(κ`)
2 log(κ`)

n

d`
,

then with probability at least

1− 2

N
−

L∑

`=1

N`e
−√κ`d` − 2

L∑

`=1

N`e
−M`/16,

the subspace detection property holds and the output of LS-SSC is non-trivial for all λ

satisfying

10

9

√
n

24 logN
< λ <

15

6

√
n

24 logN
.

Note that c1 is the same constant as in Theorem 6.7.

112

It suffices to find a condition on m` such that the assumptions of Theorem 6.7 hold.

To do this, we have to control ‖z‖2 for each column z of Z. In the missing data model,

z is the negative of the projection of a column y of Y on to m coordinates. We can then

use the following standard result about the effect of projections on `2 norms. For one

reference (among many), see [88].

Lemma 6.27. Let q be a rotation-invariant probability measure on the unit sphere Sn−1

and let U ⊆ Rn be any m-dimensional subspace. For x ∈ Sn−1, let PU(x) denote the

orthogonal projection of x on to U . Then for any 0 < ε < 1,

q

({
x ∈ Sn−1 : ‖PU(x)‖2 ≥

1

1− ε

√
m

n

})
≤ 2e−ε

2m/2.

This allows us to bound ‖z‖2 in terms of the number of missing entries m and the

ambient dimension n of the data. If we select m = O(n/d), where d is the dimension

of the subspace containing y, then with high probability the conditions of Theorem 6.7

will hold for LS-SSC. The details are in the following proof.

Proof of Theorem 6.26. Note that the required condition on d` in (6.51) is the same as

in Theorem 6.7. Therefore, to prove Theorem 6.26, it suffices to find conditions on the

number of missing entries such that the required bound on δ in Theorem 6.7 holds. Let

c2 be the absolute constant from Theorem 6.7. It suffices to show that for each column

z of Z, we have

‖z‖2 ≤ c2ρ(κ`)

√
log(κ`)

d`
.

For each `, define

M` :=
c22(1− ε)2ρ(κ`)

2 log(κ`)n

d`
.

113

Suppose that for all `,

d` ≤
c1ρ(κ`)

2 log(κ`)n

logN

and

m` ≤M`.

Fix some column y in Y coming from S`. Since S` is chosen uniformly at random from

all d`-dimensional subspaces and y is chosen uniformly on Sn−1 ∩ S`, y has a marginal

distribution that is rotational-invariant on the unit sphere. Let {i1, . . . , im`
} denote the

locations of the missing entries of y. Without loss of generality, we can assume that

m` = M`, as decreasing the number of missing entries only decreases ‖z‖2, which we

wish to bound from above.

Let U be the span of {ei1 , . . . , eim`
}. Since U is chosen independently to Y , we can

consider U as fixed with respect to y. Then z = −PU(y). By Lemma 6.27, for any ε > 0,

with probability at least 1− 2e−ε
2(1−ε)M`/4 we have

‖z‖2 ≤ (1− ε)−1
√
m`

n

≤ (1− ε)−1
√
M`

n

= c2ρ(κ`)

√
log(κ`)

d`
.

Taking a union bound, this holds for all columns z of Z with probability at least

1− 2
L∑

`=1

N`e
−M`/16.

Therefore, the conditions of Theorem 6.7 hold with at least this probability. Taking

ε = 1
2
, letting c3 = c22/4, and taking a union bound with the probability of success for

Theorem 6.7, we derive Theorem 6.26.

114

Part III

Stability and Generalization

115

Chapter 7

Stability and Generalization of

Learning Algorithms

Recipe 10: Cranberry Pie with Streusel Topping

Ingredients

• Pie dough, enough for 1 crust (see

Recipe 1)

• 4 1
2 cups cranberries

• 1 1
3 cups sugar

• Zest of 1 orange

• 1
2 teaspoon salt

• 1 tablespoon cornstarch

• 2
3 cup rolled oats

• 1
2 cup flour

• 1
3 cup brown sugar

• 1
2 teaspoon cinnamon

• 3
4 cup pecans, toasted

• 6 tablespoons butter, melted and

cooled

Preparation

1. Preheat oven to 375◦ F. Roll dough

out and transfer to a 9-inch pie pan.

Trim overhang and return to fridge.

2. Combine cranberries, 1 cup sugar, or-

ange zest, salt, and cornstarch in a

saucepan over medium heat. Cook for

10 minutes, stirring often, until filling

is loose. Let cool and add to pie.

116

3. Grind oats in a food processor. Add

pecans and coarsely grind. Add flour,

brown sugar, 1
3 cup sugar, and cinna-

mon, pulsing to combine. Add butter

and pulse until crumbles form. Sprin-

kle over cranberry filling.

4. Bake for 45 to 50 minutes, until juices

are bubbling enough to splash just

over the crumb topping.

7.1 Background

Articles, papers, and news stories everywhere abound with references to the success of

machine learning. Hundreds of startups tout the power and results of their machine

learning systems. While these systems are undeniably powerful and have accomplished

tasks that were previously thought near impossible, many of these claims of success suffer

from the same existential question that humanity faces: How do we define success?

In some scenarios, success of a machine learning system is easy to define. Consider

the setting of machine diagnosis, where we want to use machine learning to diagnose

incoming patients to a hospital. Ignoring potential privacy issues, we could train a

machine learning model on the hospital’s patient records. One measure of success could

then be “After training, how many past patients did the machine correctly diagnose?”

This measure ignores some important realities. Imagine that we wish to evaluate

how well a class of students understood last night’s homework by giving them a pop

quiz. One option would be to take questions directly from the homework and put them

on the quiz. This only tests how well the students understood that specific homework

assignment. It does not accurately measure how well they understood the underlying

117

concepts. To measure this, we would need questions the students had not previously

seen. The same is true of machine learning systems. In order to evaluate their success,

we need to test them on data that they have not already seen.

This leads to the concepts of training sets and test sets. We train our machine learning

algorithm on the training set and then evaluate it on the test set. In the hospital setting,

we could train our algorithm on 90% of the previous patient records, and then test its

success on the remaining 10%. The measure of success could then be “After training,

how many patients in the test set did the machine correctly diagnose?”

This is not the end of the story. Suppose that Hospital A is located in Madison,

Wisconsin. Hospital B, located in San Diego, California, hears about the “success” of

the machine learning system in Hospital A, and ask if they can use it to diagnose their

patients. While this might ostensibly seem like a good idea, the patients in Madison

could be very different than those in San Diego. Geographic, ethnographic, economic,

and other factors all contribute to health. The machine learning system in Madison

has only ever seen patients from Madison, and we’ve only ever tested it on patients in

Madison. In order to apply it to San Diego patients, we would like some indication that

the machine learning model will generalize to the patient population in San Diego. This

leads to a new measure of success, namely “How well does the trained machine learning

system generalize?”

Empirically, the answer seems to be that many modern machine learning algorithms

generalize extremely well [105, 57]. This is especially true of models trained using neural

networks, especially deep neural networks. These algorithms often have zero error on

their training set and almost zero error on the test set. In the analogy to the homework

and quiz for students, modern machine learning systems often get all of the homework

118

questions correct and almost all of the quiz correct.

Although there has been significant recent work in analyzing the success of such

algorithms on their training set, our theoretical understanding of their generalization

properties falls far below what has been observed empirically. A useful proxy for ana-

lyzing the generalization performance of learning algorithms is that of stability. Note

that this is a different notion of stability than the one given in Part I of this thesis. An

algorithm is stable if small changes in the training set result in small differences in the

output predictions of the trained model. A student would be stable if changing their

homework slightly did not impact how well they learned the underlying concepts.

In their foundational work, Bousquet and Elisseeff [12] establish that stability begets

generalization. While generalization is hard to understand, since it often involves quan-

tifying data we have not seen yet, stability can be more tractable. Moreover, the huge

variety in machine learning algorithms and the settings they are applied to mean that we

would like results that do not just apply to a single algorithm or setting. The goal of this

work is to provide easy-to-use stability results that apply to large classes of algorithms

and machine learning scenarios.

7.2 Prior work

The idea of stability analysis has been around for more than 30 years since the work

of Devroye and Wagner [25]. Bousquet and Elisseeff [12] defined several notions of

algorithmic stability and used them to derive bounds on generalization error. Further

work has focused on stability of randomized algorithms [32] and the interplay between

uniform convergence and generalization [85]. Mukherjee et al. [66] show that stability

119

implies consistency of empirical risk minimization. Shalev-Shwartz et al. [85] show that

stability can also imply learnability in some problems.

While there has been stability analysis for empirical risk minimizers [12, 66], there are

far fewer results for commonly used iterative learning algorithms. In a recent novel work,

Hardt et al. [43] establish stability bounds for SGD, and discuss algorithmic heuristics

that provably increase the stability of SGD models. Unfortunately, generalizing their

techniques to establish stability bounds for other first-order methods can be a strenuous

task. Showing non-trivial stability for more involved algorithms like SVRG [46], or SGD

in more nuanced non-convex setups is far from straightforward. While [43] provides a

clean and elegant analysis that shows stability of SGD for non-convex loss functions,

the result requires very small step-sizes. The step-size is small enough that one may

require exponentially many steps for provable convergence to an approximate critical

point, under standard smoothness assumptions [38]. Generally, there seems to be a

trade-off between convergence and stability of algorithms.

The work by Lin et al. [58] shows that stability of SGD can be controlled by forms of

regularization. In [52], the authors give stability bounds for SGD that are data depen-

dent. Since they do not rely on worst-case arguments, they lead to smaller generalization

error bounds than that in [43], but require assumptions on the underlying data. The

work by Liu et al. [60] gives a related notion of uniform hypothesis stability and show

that it implies guarantees on the generalization error.

Stability is closely related to the notion of differential privacy introduced in [28].

Roughly speaking, differential privacy ensures that the probability of observing any

outcome from a statistical query changes if you modify any single dataset element.

Dwork et al. later showed that differentially private algorithms generalize well [29].

120

These generalization bounds were later improved by Nissim and Stemmer [71]. Such

generalization bounds are similar to those guaranteed by stability but often require

different tools to handle directly.

7.2.1 Our Contributions

We establish that models trained by algorithms that converge to local minima are sta-

ble under the Polyak- Lojasiewicz (PL) and the quadratic growth (QG) conditions [48].

Informally, these conditions assert that the suboptimality of a model is upper bounded

by the norm of its gradient and lower bounded by its distance to the closest global min-

imizer. As we see in the following, these conditions are sufficient for stability and are

general enough to yield useful bounds for a variety of settings.

Our results require weaker conditions compared to the state-of-the art, while recov-

ering several prior stability bounds. For example in [43] the authors require convexity,

or strong convexity. Gonen and Shalev-Shwartz prove the stability of ERMs for non-

convex, but locally strongly convex loss functions obeying strict saddle inequalities [39].

By contrast, we develop comparable stability results for a large class of functions, where

no convexity, local convexity, or saddle point conditions are imposed. We note that

although [43] establishes the stability of SGD for smooth non-convex objectives, the

step-size selection can be prohibitively small for convergence. In our bounds, we make

no assumptions on the hyper-parameters of the algorithms.

We use our black-box results to directly compare the generalization performance of

popular first-order methods in general learning setups. While direct proofs of stabil-

ity seem to require a substantial amount of algorithm-specific analysis, our results are

121

derived from known convergence rates of popular algorithms. For strong convexity—a

special case of the PL condition—we recover order-wise the stability bounds of Hardt et

al. [43], but for a large family of optimization algorithms (e.g., SGD, GD, SVRG, etc).

We show that many of these algorithms offer order-wise similar stability as saddle-point

avoiding algorithms in non-convex problems where all local minima are global [39]. We

finally show that while SGD and GD have analogous stability in the convex setting, this

breaks down in the non-convex setting. We give an explicit example of a simple 1-layer

neural network on which SGD is stable but GD is not. Such an example was theorized

in [43] (i.e., Figure 10 in the aforementioned paper); here we formalize the authors’

intuition. Our results offer yet another indication that SGD trained models can be more

generalizable than full-batch GD ones.

Finally, we give examples of some machine learning scenarios where the PL condition

mentioned above holds true. Adapting techniques from [42], we show that deep networks

with linear activation functions are PL almost everywhere in the parameter space. Our

theory allows us to derive results similar to those in [49] about local/global minimizers

in linear neural networks.

7.3 Algorithmic Stability

Let S = {z1, . . . , zn} be a set of training data, where zi
iid∼ D. For a model w and a

loss function `, let `(w; z) be the error of w on the training example z. We define the

expected risk of a model w by R[w] := Ez∼D`(w; z). Since, we do not have access to

the underlying distribution D optimizing R[w] directly is not possible. Instead, we will

122

measure the empirical risk of a model w on a set S, given by:

RS[w] :=
1

n

n∑

i=1

`(w; zi).

The generalization performance of the model can then be measured by the generalization

gap:

εgen(w) := |RS[w]−R[w]|.

For our purposes, w will be the output of some (potentially randomized) learning algo-

rithm A, trained on some data set S. We will denote this output by A(S).

Let us now define a related training set S ′ = {z1, . . . , zi−1, z′i, zi+1, . . . , zn}, where

z′i ∼ D. We then have the following notion of uniform stability that was first introduced

in [12].

Definition 7.1 (Uniform Stability). An algorithm A is uniformly ε-stable, if for all data

sets S, S ′ differing in at most one example, we have

sup
z

EA
[
`(A(S); z)− `(A(S ′); z)] ≤ ε.

The expectation is taken with respect to the (potential) randomness of the algorithm

A. Bousquet and Elisseeff establish that uniform stability implies small generalization

gap [12].

Theorem 7.2. Suppose A is uniformly ε-stable. Then,

|ES,A
[
RS[A(S)]−R[A(S)]

]
| ≤ ε.

In practice, uniform stability may be too restrictive, since the bound above must

hold for all z, irrespective of its marginal distribution. The following notion of stability,

while weaker, is still enough to control the generalization gap. Given a data set S =

{z1, . . . , zn} and i ∈ {1, . . . , n}, we define Si as S\zi.

123

Definition 7.3 (Pointwise Hypothesis Stability, [12]). A has pointwise hypothesis sta-

bility β with respect to a loss function ` if

∀i ∈ {1, . . . , n}, EA,S
[
|`(A(S); zi)− `(A(Si); zi)|

]
≤ β.

Note that this is a weaker notion than uniform stability, but one can still use it to

establish non-trivial generalization bounds:

Theorem 7.4 ([12]). Suppose we have a learning algorithm A with pointwise hypothesis

stability ε with respect to a bounded loss function ` such that 0 ≤ `(w; z) ≤M . For any

δ, we have with probability at least 1− δ,

R[A(S)] ≤ RS[A(S)] +

√
M2 + 12Mnε

2nδ
.

7.3.1 Stability and (Strongly) Convex Loss Functions

As above, we suppose that we have a training set S and a loss function `(w; z) that

measures the accuracy of the model w on the training example z. As it turns out, the

geometry of ` is an important factor in the stability of algorithms that try to minimize

the empirical risk function, RS[w]. In particular, prior work has shown that strongly

convex functions have desirable stability properties.

Recall that f : Rn → R is strongly convex with parameter λ if for all x, y ∈ Rn,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
λ

2
‖y − x‖22.

We then have the following theorem, a corollary of work due to Bousquet and Elisseeff

[12], about empirical risk minimizers of strongly convex functions.

124

Theorem 7.5. Suppose that for all z, `(·, z) is λ-strongly convex and L-Lipschitz. For

any training set S of size n, let A(S) be the empirical risk minimizer of RS[w]. In other

words, A computes

A(S) = argmin
w

1

n

∑

z∈S

`(w; z).

Then A is uniformly stable with stability εstab where

εstab ≤
L2

λn
.

In practice, it is difficult to compute the exact empirical risk minimizer, even when we

have strongly convex loss functions. Instead, we are primarily interested in the stability

of frequently used algorithms, such as SGD and gradient descent. To this end, work in

[43] bounds the stability of SGD in such scenarios. They show the following theorem.

Theorem 7.6. Suppose that `(·, z) is λ-strongly convex, β-smooth, and L-Lipschitz for

all z. If we run SGD with a constant step-size γ ≤ 1/β for T iterations, then SGD will

be uniformly stable with stability εstab where

εstab ≤
2L2

λn
.

This is the same stability as that of the empirical risk minimizer, up to a factor of 2.

Even though we do not necessarily converge to the exact empirical risk minimizer, the

geometry of the loss function still allows us to derive useful stability results.

7.4 Mathematical Perspective and Main Results

As discussed above, the geometry of strongly convex functions allows us to derive stabil-

ity results for empirical risk minimizers and SGD applied to strongly convex functions.

125

While [43] also derive results for SGD in the non-convex setting, they require the step-

size at iteration t to satisfy γt ≤ c/t for some constant c. This may result in exponentially

slow convergence.

The other issue is that the analysis in [43] does not directly generalize to similar

algorithms. We would like to derive stability results that apply to non-convex functions

and large classes of algorithms. Simply put, an algorithm-by-algorithm stability analysis

would be a tedious, drawn-out process. Moreover, varying assumptions in theory may

make comparing stability of algorithms difficult.

Instead, our main results will show that we can decompose the stability εstab as

εstab ≤ εA + δ

where εA only relies on the convergence of the algorithm A, and δ is a function of

the geometry of the underlying loss function. Moreover, to do this we do not need

strong convexity, or even convexity. To get δ comparable to previous stability results

for strongly convex functions, we only need our loss functions to satisfy the Polyak-

 Lojasiewicz (PL) condition. A function f : Rn → R is said to satisfy this condition with

parameter µ > 0 if for all x ∈ Rn,

1

2
‖∇f(x)‖22 ≥ µ(f(x)− f ∗).

As we discuss in the following, the PL condition allows for non-convex functions, but

constrains the geometry in a manner similar to strong convexity. This allows us to derive

parallel results between strongly convex and PL functions, such as linear convergence of

gradient descent. As we show, it also allows us to derive similar stability results between

strongly convex and PL functions, for large classes of algorithms. We will show the

following theorem.

126

Theorem 7.7. Suppose that we use an algorithm A to minimize the empirical loss

function RS[w] for a training set of size n. If RS[w] is PL with parameter µ, then A

will be pointwise hypothesis stable with stability εstab satisfying

εstab ≤ εA +
2L2

µ(n− 1)

where εA depends only on the convergence of A.

We will also show a version of this theorem when RS[w] only satisfies a weaker

condition called Quadratic Growth. This will be discussed in the following. We then

use these results to understand the stability of popular first-order algorithms.

Despite this algorithm-agnostic result, we will show that when we consider more gen-

eral non-convex loss functions, different algorithms can exhibit wildly different stability.

In particular, we construct an explicit non-convex loss function and training sets where

gradient descent is not stable but SGD is.

127

Chapter 8

Stability and the Polyak- Lojasiewicz

Condition

Recipe 11: Blackberry Cheesecake Galette

Ingredients

• Pie dough, enough for 1 crust (see

Recipe 1)

• 1 cup blackberries, halved

• 1
2 cup sugar

• 1 teaspoon lime juice

• 1 teaspoon cornstarch

• 8 ounces cream cheese, softened

• 1 egg and 1 egg, separated

• Zest of 1
2 lime

• 1
2 teaspoon vanilla extract

• 1
4 teaspoon salt

• 1 tablespoon chopped pistachios

Preparation

1. In a small bowl, combine blackberries,

1 tablespoon sugar, lime juice, and

cornstarch. Stir and set aside.

2. Preheat oven to 350◦ F. Roll dough

out into large 12-14 inch circle and

transfer to a 9-inch pie pan. Do not

trim overhang.

3. In a medium bowl, beat cream cheese

with whole egg and egg white until

128

light and fluffy. Beat in remaining

sugar, lime zest, vanilla, and salt.

4. Pour mixture into prepared pie dish.

Spoon blackberry mixture and juices

over the cream cheese mixture. Swirl

lightly with a toothpick for decora-

tion.

5. Gently lift the overhanging dough and

pinch into loose creases. Gently lay

crease down over filling. Repeat until

no overhang remains.

6. Combine egg yolk and 1
2 teaspoon wa-

ter. Gently brush crust with egg mix-

ture. Sprinkle the entire tart with

sugar and pistachios.

7. Bake for 35 minutes or until a tester

inserted into the cheesecake comes out

clean.

8.1 The Polyak- Lojasiewicz and Quadratic Growth

Conditions

In the following, we derive stability for models trained on empirical risk functions satisfy-

ing the Polyak- Lojasiewicz (PL) and the Quadratic Growth (QG) condition. We assume

throughout that the functions in question are L-Lipschitz. For simplicity of notation, we

will assume that all domains are subsets of Rm for some m. We will typically consider

the `2 norm on such domains.

In [48], Karimi et al. used the Polyak- Lojasiewicz condition to prove simplified nearly

optimal convergence rates for several first-order methods. Notably, there are some non-

convex functions that satisfy the PL condition. The condition is defined below.

Definition 8.1 (Polyak- Lojasiewicz). Fix a set X and let f ∗ denote the minimum value

129

of f on X . We will say that a function f satisfies the Polyak- Lojasiewicz (PL) condition

on X , if there exists µ > 0 such that for all x ∈ X we have

1

2
‖∇f(x)‖22 ≥ µ(f(x)− f ∗). (8.1)

This condition roughly says that the gradient of f grows quadratically in norm as

we move away from a global minimizer. This geometric condition is similar to strong

convexity, which bounds the function from below by a quadratic function. Note that for

PL functions, every critical point is a global minimizer. This is a weaker condition than

being strongly-convex, as the following lemma shows.

Lemma 8.2. Suppose that f is λ-strongly convex. Then f is λ-PL.

Proof. Since f is λ-strongly convex, we know that for all x, y in the domain of f , we

have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
λ

2
‖y − x‖22.

Setting y to be the unique minimizer x∗ of f(x), we then get

f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉+
λ

2
‖x∗ − x‖22

≥ f(x) + min
z
〈∇f(x), z − x〉+

λ

2
‖z − x‖22.

Define

g(z) := 〈∇f(x), z − x〉+
λ

2
‖z − x‖22.

Setting the gradient equal to zero, we get

∇g(z) = ∇f(x) + λ(z − x) = 0.

=⇒ z = x− 1

λ
∇f(x).

130

At this point, we then have

g

(
x− 1

λ
∇f(x)

)
= − 1

2λ
‖∇f(x)‖22.

Therefore,

f(x∗) ≥ f(x) + min
z
g(z)

= f(x)− 1

2λ
‖∇f(x)‖22.

Rearranging, we find

1

2
‖∇f(x)‖22 ≥ λ(f(x)− f ∗).

In general, the converse does not hold. There are functions that are PL but not

strongly convex.

Example 8.3. Consider the function f(x, y) = x2. Then note that f does not have a

unique minimizer. Its minimizers are all points of the form (0, y) and these points all

satisfy f(0, y) = 0. However, we have

1

2
‖∇f(x, y)‖22 =

1

2

∥∥[2x 0]T
∥∥2
2

= 2x2

≥ 2(x2)

= 2(f(x))

= 2(f(x)− f ∗).

Therefore, f is not strongly convex but it is PL with µ = 2.

In general, PL functions are examples of invex functions.

131

Definition 8.4 (Invex). A differentiable function f : Rn → R is invex if every critical

point is a global minimizer.

Clearly, PL functions satisfy this property. We also have the following equivalent

definition of the PL condition due to Karimi et al.

Lemma 8.5 (Error bound, [48]). Let f : Rn → R. For any x ∈ Rn, let xp denote the

closest global optima in X . Then f satisfies the PL condition iff there is some constant

µ > 0 such that for all x ∈ Rn,

‖∇f(x)‖2 ≥ µ‖xp − x‖2.

PL functions are important in optimization due to the fact that under this condition,

many first-order methods exhibit similar convergence rates to the strongly convex case.

We give one theorem below showing that under the PL condition, gradient descent has

a linear convergence rate, just as in the strongly convex case. The theorem and proof

were first shown in [48]. We also present the proof to help make the reader familiar with

how one can use the PL condition in practice to derive practical results.

Theorem 8.6 ([48]). Suppose that f(x) is β-smooth and satisfies the PL condition with

parameter µ. Then gradient descent on f with step-size 1/β with updates

xk+1 = xk −
1

β
∇f(xk)

has a global linear convergence rate

f(xk)− f ∗ ≤
(

1− µ

β

)k
(f(x0)− f ∗).

132

Proof. Setting y = xk+1, x = xk in (2.2), we have

f(xk+1)− f(xk) ≤ 〈∇f(xk),−
1

β
∇f(xk)〉+

β

2
‖ 1

β
∇f(xk)‖22

= − 1

2β
‖∇f(xk)‖22.

By the PL inequality in (8.1), this implies

f(xk+1)− f(xk) ≤ −
µ

β
(f(xk)− f ∗).

Rearranging, this implies

f(xk+1)− f ∗ ≤
(

1− µ

β

)
(f(xk)− f ∗)

≤
(

1− µ

β

)2

(f(xk−1)− f ∗)

...

≤
(

1− µ

β

)k+1

(f(x0)− f ∗).

[48] also shows that under the PL condition, many first-order algorithms, including

SGD, RCD, Proximal-Gradient Descent, and SVRG, exhibit similar convergence rates

to the setting where the function is strongly convex. In this paper, we also consider a

strictly larger family of functions that satisfy the Quadratic Growth (QG) condition.

Definition 8.7 (Quadratic Growth). We will say that a function f satisfies the quadratic

growth (QG) condition on a set X , if there exists µ > 0 such that for all x ∈ X we have

f(x)− f ∗ ≥ µ

2
‖xp − x∗‖22,

where xp denotes the Euclidean projection of x onto the set of global minimizers of f in

X (i.e., xp is the closest point to x in X satisfying f(xp) = f ∗).

133

Note that this is weaker than the PL condition, as shown in [48].

Lemma 8.8 ([48]). The PL condition implies the QG condition.

Both of these conditions have been considered in previous studies. The PL condition

was first introduced by Polyak in [61], who showed that under this assumption, gradient

descent converges linearly. The QG condition has been considered under various guises

[10, 45] and can imply important properties about the geometry of critical points. For

example, [2] showed that local minima of nonlinear programs satisfying the QG condition

are actually isolated stationary points. These kinds of geometric implications will allow

us to derive stability results for large classes of algorithms.

8.2 Black-box Stability of Approximate Global Min-

ima

In this section, we establish the stability of large classes of learning algorithms under

the PL and QG conditions presented above. Our stability results are “black-box” in the

sense that our bounds are decomposed as a sum of two terms: a term concerning the

convergence of the algorithm to a global minimizer, and a term relevant to the geometry

of the loss function around the global minima. Both terms are used to establish good

generalization and provide some insights into the way that learning algorithms perform.

For a given data set S, suppose we use an algorithm A to train some model w. We

let wS denote the output of our algorithm on S. The empirical training error on a data

set S is denoted fS(w) and is given by

fS(w) =
1

|S|
∑

z∈S

`(w; z).

134

We assume that each of these losses is L-Lipschitz with respect to the parameters of

the model. We are interested in conditions on fS that allow us to make guarantees on

the stability of A. As it turns out, the PL and QG condition will allow us to prove such

results. Although it seems unclear if these conditions are reasonable, in our last section

we show that they arise in a large number of machine learning settings, including in

certain deep neural networks.

8.2.1 Pointwise Hypothesis Stability for PL/QG Loss Func-

tions

To analyze the performance machine learning algorithms, it often suffices to understand

the algorithm’s behavior with respect to critical points. This requires knowledge of the

convergence of the algorithm, and an understanding of the geometric properties of the

loss function around critical points. As it turns out, the PL and QG conditions allow

us to understand the geometry underlying the minima of our function. Let Xmin denote

the set of global minima of fS.

Theorem 8.9. Assume that for all S and w ∈ X , fS is PL with parameter µ. We

assume that applying A to fS produces output wS that is converging to some global

minimizer w∗S. Then A has pointwise hypothesis stability with parameter εstab satisfying

the following conditions.

Case 1: If for all S, ‖wS − w∗S‖2 ≤ O(εA) then

εstab ≤ O(LεA) +
2L2

µ(n− 1)
.

Case 2: If for all S, |fS(wS)− fS(w∗S)| ≤ O(ε′A) then

135

εstab ≤ O

(
L

√
ε′A
µ

)
+

2L2

µ(n− 1)
.

Case 3: If for all S, ‖∇fS(wS)‖2 ≤ O(ε′′A), then

εstab ≤ O

(
Lε′′A
µ

)
+

2L2

µ(n− 1)
.

Proof. Fix a training set S and i ∈ {1, . . . , n}. We will show pointwise hypothesis

stability for all S, i instead of for them in expectation. Let w1 denote the output of A

on S, and let w2 denote the output of A on Si. Let w∗1 denote the critical point of fS to

which w1 is approaching, and w∗2 denote the critical point of fSi that w2 is approaching.

We then have,

|`(w1; zi)− `(w2; zi)|

≤ |`(w1; zi)− `(w∗1; zi)|+ |`(w∗1; zi)− `(w∗2; zi)|+ |`(w∗2; zi)− `(w2; zi)|. (8.2)

We first wish to bound the first and third terms of (8.2). The bound depends on the

case in Theorem 8.9.

Case 1: By assumption, ‖w1 − w∗1‖2 = O(εA). Since `(·; zi) is L-Lipschitz, this

implies

|`(w1; zi)− `(w∗1; zi)| ≤ L‖w1 − w∗1‖2 = O(LεA).

Case 2: As stated in Lemma 8.8, the PL condition implies the QG condition.

Therefore,

µ

2
‖w1 − w∗1‖22 ≤ |fS(w1)− fS(w∗1)|. (8.3)

136

By assumption on case 2, |fS(w1)− fS(w∗1)| ≤ O(ε′A). This implies

‖w1 − w∗1‖2 ≤
√

2
√
µ

√
|fS(w1)− fS(w∗1)|

= O

(√
ε′A
µ

)
.

Case 3: By Lemma 8.5, the PL condition on w1, w
∗
1 implies that

‖∇fS(w1)‖2 ≥ µ‖w1 − w∗1‖2.

Using the fact that fS is L-Lipschitz and the fact that ‖∇fS(wj)‖2 ≤ O(ε′′A) by

assumption on Case 3, we find

|`(w1; zi)− `(w∗1; zi)| ≤ L‖w1 − w∗1‖2 ≤
L

µ
‖∇fS(w1)‖2 ≤ O

(
Lε′′A
µ

)
.

In the above three cases, we can bound |`(w2; zi)−`(w∗2; zi)| in the same manner. We

now wish to bound the second term of (8.2). Note that we can manipulate this term as

|`(w∗1; zi)− `(w∗2; zi)| = |(nfS(w∗1)− (n− 1)fSi(w∗1))− (nfS(w∗2) + (n− 1)fSi(w∗2))|

≤ n|fS(w∗1)− fS(w∗2)|+ (n− 1)|fSi(w∗1)− fSi(w∗2)|. (8.4)

By the PL condition, we can find a local minima u of fS such that

‖∇fS(w∗2)‖22 ≥ µ|fS(w∗2)− fS(u)|.

Similarly, we can find a local minima v of fSi such that

‖∇fSi(w∗1)‖22 ≥ µ|fSi(w∗1)− fSi(v)|.

137

Note that since ∇fSi(w∗2) = 0, we get:

‖∇fS(w∗2)‖22 =
1

n2
‖∇`(w∗2; zi)‖22 ≤

L2

n2
.

Similarly, since ∇fS(w∗1) = 0, we get:

‖∇fSi(w∗1)‖22 =
1

(n− 1)2
‖∇`(w∗1; zi)‖22 ≤

L2

(n− 1)2
.

Since all local minima of a PL function are global minima, we obtain

n|fS(w∗1)− fS(w∗2)| ≤ n|fS(w∗1)− fS(u)|+ n|fS(u)− fS(w∗2)|

≤ n
L2

µn2

=
L2

µn
. (8.5)

In a similar manner, we get

(n− 1)|fSi(w∗1)− fSi(w∗2)| ≤ (n− 1)|fSi(w∗1)− fSi(v)|+ (n− 1)|fSi(v)− fSi(w∗2)|

≤ (n− 1)
L2

µ(n− 1)2

≤ L2

µ(n− 1)
. (8.6)

Plugging in 8.5, 8.6 into 8.4, we find

|`(w∗1; zi)− `(w∗2; zi)| ≤
L2

µn
+

L2

µ(n− 1)
.

This proves the desired result.

Suppose our loss functions are PL and our algorithm A is an oracle that returns a

global optimizer w∗S. Then the terms εA, ε
′
A, ε

′′
A above are all identical to 0, leading to

the following corollary.

138

Corollary 8.10. Let fS satisfy the PL inequality with parameter µ and let

A(S) = argmin
w∈X

fS(w).

Then A has pointwise hypothesis stability with

εstab =
2L2

µ(n− 1)
.

Bousquet and Elisseeff considered the stability of empirical risk minimizers where

the loss function satisfied strong convexity [12]. Their work implies that for λ-strongly

convex functions, the empirical risk minimizer has we stability satisfying εstab ≤ L2

λn
.

Since λ-strongly convex implies λ-PL, Corollary 8.14 generalizes their result, with only

a constant factor loss.

Remark 8.11. Theorem 8.9 holds even if we only have information about A in expec-

tation. For example, if we only know that EA‖wS − w∗S‖2 ≤ O(εA), we still establish

pointwise hypothesis stability (in expectation with respect to A), with the same constant

as above. This allows us to apply our result to algorithms such as SGD where we are

interested in the convergence in expectation.

A similar result to Theorem 8.9 can be derived for empirical risk functions satisfy

the QG condition and are realizable, e.g., where zero training loss is achievable.

Theorem 8.12. Assume that for all S and w ∈ X , fS is QG with parameter µ and that

all its global minima u satisfy fS(u) = 0. We assume that applying A to fS produces

output wS that is converging to some global minimizer w∗S. We also assume that for all

feasible w and z, |`(w; z)| ≤ c. Then A has pointwise hypothesis stability with parameter

εstab satisfying the following conditions.

139

Case 1: If for all S, ‖wS − w∗S‖2 ≤ O(εA) then

εstab ≤ O(LεA) + 2L

√
c

µn
.

Case 2: If for all S, |fS(wS)− fS(w∗S)| ≤ O(ε′A) then

εstab ≤ O

(
L

√
ε′A
µ

)
+ 2L

√
c

µn
.

Proof. Fix a training set S and i ∈ {1, . . . , n}. We will show pointwise hypothesis

stability for all S, i instead of for them in expectation. Let w1 denote the output of A

on S, and let w2 denote the output of A on Si. Let w∗1 denote the critical point of fS to

which w1 is approaching, and w∗2 denote the critical point of fSi that w2 is approaching.

We then have,

|`(w1; zi)− `(w2; zi)|

≤ |`(w1; zi)− `(w∗1; zi)|+ |`(w∗1; zi)− `(w∗2; zi)|+ |`(w∗2; zi)− `(w2; zi)|. (8.7)

We first wish to bound the first and third terms of (8.7). The bound depends on the

case in Theorem 8.12.

Case 1: By assumption, ‖w1 − w∗1‖2 = O(εA). Since `(·; zi) is L-Lipschitz, this

implies

|`(w1; zi)− `(w∗1; zi)| ≤ L‖w1 − w∗1‖2 = O(LεA).

Case 2: By the QG condition, we have

µ

2
‖w1 − w∗1‖22 ≤ |fS(w1)− fS(w∗1)|. (8.8)

140

By assumption on case 2, |fS(w1)− fS(w∗1)| ≤ O(ε′A). This implies

‖w1 − w∗1‖2 ≤
√

2
√
µ

√
|fS(w1)− fS(w∗1)|

= O

(√
ε′A
µ

)
.

In the above two cases, we can bound |`(w2; zi)− `(w∗2; zi)| in the same manner. We

now wish to bound the second term of (8.7). By the QG property, we can pick some

local minima v of fS such that

‖w∗2 − v‖2 ≤
2
√
µ

√
|fS(w∗2)− fS(v)|. (8.9)

We then have

|`(w∗1; zi)− `(w∗2; zi)| ≤ |`(w∗1; zi)− `(v; zi)|+ |`(v; zi)− `(w∗2; zi)|.

Note that by assumption, fS(w∗1) = fS(u) = 0, so |`(w∗1; zi) − `(v; zi)| = 0. By the

Lipschitz property and the QG condition we have

|`(v; zi)− `(w∗2; zi)| ≤ L‖v − w∗2‖2

≤ 2L
√
µ

√
|fS(w∗2)− fS(v)|

≤ 2L
√
µ

√
|fS(w∗2)− fS(w∗1)|+ |fS(w∗1)− fS(v)|. (8.10)

Note that |fS(w∗1) − fS(v)| = 0 by our realizability assumption. By assumption on

w∗1, w
∗
2, we know that fS(w∗1) ≤ fS(w∗2) and fSi(w∗2) ≤ fSi(w∗1). Some simple analysis

shows

nfS(w∗2) = nfSi(w∗2) + `(w∗2; zi)

≤ nfSi(w∗1) + `(w∗2; zi)

= nfS(w∗1) + `(w∗2; zi)− `(w∗1; zi).

141

Since `(w∗2; zi) ≤ c, this implies that n|fS(w∗2) − fS(w∗1)| ≤ c. Plugging this bound

into 8.10, we get

|`(v; zi)− `(w∗2; zi)| ≤ 2L

√
c

µn
.

This proves the desired result.

Remark 8.13. Observe that unlike the case of PL empirical losses, QG empirical losses

only allow for a O(1√
n
) convergence rate of stability. Moreover, similarly to our result

for PL loss functions, the result of Theorem 8.12 holds even if we only have information

about the convergence of A in expectation.

Finally, we can obtain the following corollary for empirical risk minimizers of QG

loss functions.

Corollary 8.14. Let fS satisfy the QG inequality with parameter µ and let

A(S) = argmin
w∈X

fS(w).

Then A has pointwise hypothesis stability with

εstab = 2L

√
c

µn
.

8.2.2 Uniform Stability for PL/QG Loss Functions

Under a more restrictive setup, we can obtain similar bounds for uniform hypothesis

stability, which is a stronger stability notion compare to its pointwise hypothesis variant.

The usefulness of uniform stability compared to pointwise stability, is that it can lead

to generalization bounds that concentrate exponentially faster [12] with respect to the

sample size n.

142

As before, given a data set S, we let denote wS be the model that A outputs. Let

πS(w) denote the closest optimal point of fS to w. We will denote πS(wS) by w∗S. Let

S, S ′ be data sets differing in at most one entry. We will make the following technical

assumption:

Assumption 8.15. The empirical risk minimizers for fS and fS′, i.e., w∗S, w
∗
S′ satisfy

πS(w∗S′) = w∗S, where πS(w) is the projection of w on the set of empirical risk minimizers

of fS. Note that this is satisfied if for every data set S, there is a unique minimizer w∗S.

Remark 8.16. We would like to note that the above assumption is extremely strict, and

in general does not apply to empirical losses with infinitely many global minima. To

tackle the existence of infinitely many global minima, one could imagine designing A(S)

to output a structured empirical risk minimizer, e.g., one such that if A is applied on S ′,

its projection on the optima of fS would always yield back A(S). This could be possible,

if A(S) corresponded to minimizing instead a regularized, or structure constrained cost

function whose set of optimizers only contained a small subset of the global minima

of fS. Unfortunately, coming up with such a structured empirical risk minimizer for

general non-convex losses seems far from straightforward, and serves as an interesting

open problem.

Theorem 8.17. Assume that for all S, fS satisfies the PL condition with constant µ,

and suppose that Assumption 8.15 holds. Then A has uniform stability with parameter

εstab satisfying the following conditions.

Case 1: If for all S, ‖wS − w∗S‖2 ≤ O(εA) then

εstab ≤ O(LεA) +
2L2

µn
.

143

Case 2: If for all S, |fS(wS)− fS(w∗S)| ≤ O(ε′A) then

εstab ≤ O

(
L

√
ε′A
µ

)
+

2L2

µn
.

Case 3: If for all S, ‖∇fS(wS)‖2 ≤ O(ε′′As), then

εstab ≤ O

(
Lε′′A
µ

)
+

2L2

µn
.

Proof. Let S1 = {z1, . . . , zn}, S2 = {z1, . . . , zn−1, z′n} be data sets of size n differing only

in one entry. Let wi denote the output of A on data set Si and let w∗i denote w∗Si
. Let

fi(w) = fSi
(w).

Using the fact that `(·; z) is L-Lipschitz we get

|`(w1; z)− `(w2; z)| ≤ L‖w1 − w2‖2

≤ L‖w1 − w∗1‖2 + L‖w∗1 − w∗2‖2 + L‖w∗2 − w2‖2 (8.11)

Note that by A1, we know that w∗1 is the closest optimal point of f1 to w∗2. By the

PL condition,

‖w∗1 − w∗2‖2 ≤
1

µ
‖∇f1(w∗2)‖2

=
1

µ
‖∇f2(w∗2)−

1

n
∇`(w∗2; z′n) +

1

n
∇`(w∗2; zn)‖2

≤ 1

µn
(‖∇`(w∗2; z′n)‖2 + ‖∇`(w∗2; zn)‖2)

≤ 2L

µn

This bounds the second term of 8.11. The first and third terms must be bounded

differently depending on the case.

Case 1: By assumption, for i = 1, 2, ‖wi − w∗i ‖2 = O(εA), proving the result.

144

Case 2: As stated in Lemma 8.8, PL implies QG. Therefore for i = 1, 2,

‖wi − w∗i ‖2 ≤
√

2
√
µ

√
fi(wi)− f ∗i

= O

(√
ε′A
µ

)

Case 3: As mentioned above in Lemma 8.5, the PL condition implies that for

i = 1, 2,

‖∇fi(wi)‖2 ≥ µ‖wi − w∗i ‖.

Since ‖∇fi(wi)‖ ≤ O(ε′′A), we get the desired result.

Since strong convexity is a special case of PL, this theorem implies that if we run

enough iterations of a convergent algorithm A on a λ-strongly convex loss function, then

we would expect uniform stability on the order of

εstab = O

(
L2

λn

)
.

In particular, this theorem recovers the stability estimates for ERMs and SGD applied

to strongly convex functions proved in [12] and [43], respectively.

In order to make this result more generally applicable, we would like to extend the

theorem to a larger class of functions than just globally PL functions. If we assume

boundedness of the loss function, then we can derive a similar result for globally QG

functions. This leads us to the following theorem:

Theorem 8.18. Assume that for all S, fS satisfies the QG condition with parameter

µ, moreover let Assumption 8.15 hold. Suppose that for all z and w ∈ X , `(w; z) ≤ c.

Then A is uniformly stable with parameter εstab satisfying:

145

Case 1: If for all S, ‖wS − w∗S‖ ≤ O(εA) then for all z we have:

εstab ≤ O(LεA) + 2L

√
c

µn
.

Case 2: If for all S, |fS(wS)− f ∗S| ≤ O(ε′A) then for all z we have:

εstab ≤ O

(
L

√
ε′A
µ

)
+ 2L

√
c

µn
.

To prove this, we will use the following lemma.

Lemma 8.19. Let fS be QG and assume that `(w; z) ≤ c for all z and w ∈ X . We

assume A1 as above. Then for S1, S2 differing in at most one place,

‖w∗1 − w∗2‖2 ≤ 2

√
c

µn
.

Proof. By QG:

µ

2
‖w∗1 − w∗2‖22 ≤ |f1(w∗2)− f1(w∗1)|

≤ |f1(w∗2)− f2(w∗2)|+ |f2(w∗2)− f1(w∗1)|

Note that for all w, |f1(w)− f2(w)| = 1
n
|`(w; zn)− `(w; z′n)|, so this is bounded by c

n
.

By this same reasoning we get:

f2(w
∗
2) ≤ f2(w

∗
1) ≤ f1(w

∗
1) +

c

n

The desired result follows.

Proof of Theorem 8.18. Using the fact that `(·; z) is L-Lipschitz we get

|`(w1; z)− `(w2; z)| ≤ L‖w1 − w2‖2

≤ L‖w1 − w∗1‖2 + L‖w∗1 − w∗2‖2 + L‖w∗2 − w2‖2 (8.12)

146

Note that by A1, we know that w∗1 is the closest optimal point of f1 to w∗2. By

Lemma 8.19,

‖w∗1 − w∗2‖2 ≤ 2

√
c

µn
.

This bounds the second term of 8.11. The first and third terms must be bounded

differently depending on the case.

Case 1: By assumption, for i = 1, 2, ‖wi − w∗i ‖2 = O(εA), proving the result.

Case 2: By the QG property, we get that for i = 1, 2,

‖wi − w∗i ‖2 ≤
√

2
√
µ

√
fi(wi)− f ∗i

= O

(√
ε′A
µ

)

This proves the desired bound.

Remark 8.20. By analogous reasoning to that in Remark 8.11, both Theorem 8.17 and

Theorem 8.18 hold if you only have information about the output of A in expectation.

8.3 Examples of PL Loss Functions

8.3.1 Compositions of Strongly Convex and Piecewise-Linear

Functions

As the bounds above show, the PL and QG conditions are sufficient for algorithmic

stability and therefore imply good generalization. In this section, we show that the PL

condition actually arises in some interesting machine learning setups, including least

147

squares minimization, strongly convex functions composed with piecewise linear func-

tions, and neural networks with linear activation functions. A first step towards a

characterization of PL loss functions was proved by Karimi et al. [48], which established

that the composition of a strongly-convex function and a linear function results in a loss

that satisfies the PL condition.

We wish to generalize this result to piecewise linear activation functions. Suppose

that σ : R → R is defined by σ(z) = c1z, for z > 0 and σ(z) = c2z, forz ≤ 0. Here

ci > 0. For a vector z ∈ Rn, we denote by σ(z) ∈ Rn the vector whose ith component is

σ(zi). Note that this encompasses leaky-ReLU functions. Following similar techniques

to those in [48], we get the following result showing that the composition of strongly

convex functions with piecewise-linear functions are PL.

Theorem 8.21. Let g be strongly-convex with parameter λ, σ a leaky ReLU activation

function with slopes c1 and c2, and X a matrix with minimum singular value σmin(X).

Let c = min{|c1|, |c2|}. Then f(w) = g(σ(Xw)) is PL almost everywhere with parameter

µ = λσmin(X)2c2.

Proof. For almost all w, we can write σ(Xw) as diag(b)Xw for a vector b where bi(Xw)i =

σ((Xw)i) (this only exludes points w such that (Xw)i is on a cusp of the piecewise-linear

function). Then in an open neighborhood of such an w, we find:

f(w) = g(σ(Xw)) = g(diag(b)Xw)

For a given w, let wp be the closest global minima of f (i.e., the closest point such

148

that f ∗ = f(wp)). By strong convexity of g, we find:

g(diag(b)Xwp) ≥ g(diag(b)Xw) + 〈∇g(diag(b)Xw), diag(b)X(wp − w)〉

+
λ

2
‖diag(b)X(wp − w)‖22

=⇒ g(diag(b)Xwp) ≥ g(diag(b)Xw) + 〈XTdiag(b)T∇g(diag(b)Xw), wp − w〉

+
λ

2
‖diag(b)X(wp − w)‖22

=⇒ f(wp) ≥ f(w) + 〈∇f(w), wp − w〉+
λσmin(X)2σmin(diag(b))2

2
‖wp − w‖22.

Note that the minimum singular value of diag(b) is the square root of the minimum

eigenvalue of diag(b)2. Since diag(b)2 has entries c2i on the diagonal, we know that the

minimum singular value is at least c = mini{|ci|}. Therefore we get:

f(wp) ≥ f(w) + 〈f(w), wp − w〉+
λσmin(X)2c2

2
‖wp − w‖22

≥ f(w) + min
y

[
〈∇f(w), y − w〉+

λσmin(X)2c2

2
‖y − w‖22

]

= f(w)− 1

2λσmin(X)2c2
‖∇f(w)‖22.

In particular, 1-layer neural networks with a squared error loss and leaky ReLU

activations satisfy the PL condition. More generally, this holds for any piecewise-linear

activation function with slopes {ci}ki=1. As long as each slope is non-zero and X is full

rank, the result above shows that the PL condition is satisfied.

8.3.2 Linear Neural Networks

The results above only concern one layer neural networks. Given the prevalence of deep

networks, we would like to say something about the associated loss function. As it turns

149

out, we can prove that a PL inequality holds in large regions of the parameter space for

deep linear networks. Note that for matrix-valued functions, the correct analog of the

PL condition involves a bound on the Frobenius norm of the gradient with respect to

the matrix. This allows us to keep the computations in matrix form, which will make

the proofs more manageable.

Say we are given a training set S = {z1, . . . , zn} where zi = (xi, yi) for xi, yi ∈ Rd.

Our neural network will have ` fully-connected non-input layers, each with d neurons

and linear activation functions. We will parametrize the neural network model via

W1, . . . ,W`, where each Wi ∈ Rd×d. That is, the output at the first non-input layer

is u1 = W1x and the output at layer k ≥ 2 is Akuk−1. Letting X, Y ∈ Rd×N be the

matrices with xi, yi as their columns (respectively), we can then write our loss function

as

f(W) =
1

2
‖W`W`−1 . . .W1X − Y ‖2F .

Let W = W`W`−1 . . .W1. The optimal value of W is W ∗ = Y X+. Here, X+ =

XT (XXT)−1 is the pseudoinverse of X. We assume that X ∈ Rd×N has rank d so that

XXT is invertible. We will also make use of the following lemma.

Lemma 8.22. Let W ∈ Rd×d be some weight matrix. Then for C = ‖(XXT)−1X‖2F ,

we have

C‖(WX − Y)XT‖2F ≥ ‖WX − Y ‖2F − ‖Y X+X − Y ‖2F .

150

Proof. Using basic properties of the Frobenius norm and the definition of the pseudo-

inverse, we have

‖(WX − Y)XT‖2F‖(XXT)−1X‖2F ≥ ‖(WX − Y)XT (XXT)−1X‖2F

= ‖(WX − Y)X+X‖2F

= ‖WXX+X − Y X+X‖2F

= ‖WX − Y X+X‖2F .

This last step follows by basic properties of the pseudo-inverse. By the triangle inequal-

ity,

‖WX−Y ‖2F = ‖WX−Y X+X+Y X+X−Y ‖2F ≤ ‖Y X+X−Y ‖2F +‖WX−Y X+X‖2F .

Note that Y X+X − Y is the component of Y that is orthogonal to the row-space of

X, while Y X+X is the projection of Y on to this row space. Therefore, Y X+X − Y

is orthogonal to WX − Y X+X with respect to the trace inner product. Therefore, the

inequality above is actually an equality, that is

‖WX − Y ‖2F = ‖Y X+X − Y ‖2F + ‖WX − Y X+X‖2F .

Putting this all together, we find

‖(XXT)−1X‖2F‖(WX − Y)XT‖2F ≥ ‖WX − Y ‖2F − ‖Y X+X − Y ‖2F .

For a matrix A, let σmin(A) denote the smallest singular value of A. For a given

W1, . . . ,W`, let W = W`W`−1 . . .W1. We can then prove the following lemma.

151

Lemma 8.23. Suppose that the Wi satisfy σmin(Wi) ≥ τ > 0 for all i. Then,

‖∇f(W1, . . . ,W`)‖2F ≥ `τ 2`−2‖(WX − Y)XT‖2F .

Proof. Our proof uses similar techniques to that of Hardt and Ma [42]. We wish to

compute the gradient of f with respect to a matrix Wj. One can show the following:

∂f

∂Wj

= W T
j+1 . . .W

T
` (WX − Y)XTW T

1 . . .W
T
j−1.

Using the fact that for a matrix A ∈ Rd×d and another matrix B ∈ Rd×k, we have

‖AB‖F ≥ σmin(A)‖B‖F , we find:

∣∣∣∣
∣∣∣∣
∂f

∂Wj

∣∣∣∣
∣∣∣∣
F

≥
∏

i 6=j

σmin(Wi)‖(WX − Y)XT‖F .

By assumption, σmin(Wj) ≥ τ . Therefore:

∣∣∣∣
∣∣∣∣
∂f

∂Wj

∣∣∣∣
∣∣∣∣
2

F

≥ τ 2`−2‖(WX − Y)XT‖2F .

Taking the gradient with respect to all Wi we get:

∣∣∣∣
∣∣∣∣

∂f

∂(W1, . . . ,W`)

∣∣∣∣
∣∣∣∣
2

F

=
∑̀

j=1

∣∣∣∣
∣∣∣∣
∂f

∂Wj

∣∣∣∣
∣∣∣∣
2

F

≥ `τ 2`−2‖(WX − Y)XT‖2F .

Combining Lemmas 8.22 and 8.23, we derive the following interesting corollary about

when critical points are global minimizers. This result is not directly related to the work

above, but gives an easy way to understand the landscape of critical points of deep linear

networks.

152

Theorem 8.24. Let (W1, . . . ,W`) be a critical point such that each Wi has full rank.

Then (W1, . . . ,W`) is a global minimizer of f .

Proof. Since each Wi has full rank, we know that τ = mini σmin(Wi) > 0. Using Lemma

8.23 and the fact that ∇f(W1, . . . ,W`) = 0, we get ‖(WX − Y)XT‖2F = 0. Therefore,

WXXT = Y XT . Assuming that (XXT) is invertible, we find that W = Y X+, which

equals W ∗.

Thematically similar results have been derived previously for 1 layer networks in [99]

and for deep neural networks in [106]. In [49], Kawaguchi derives a similar result to

ours for deep linear neural networks. Kawaguchi shows that every critical point is either

a global minima or a saddle point. Our result, by contrast, implies that all full-rank

critical points are global minima.

Lemmas 8.22 and 8.23 can also be combined to show that linear networks satisfy the

PL condition in large regions of parameter space, as the following theorem says.

Theorem 8.25. Suppose our weight matrices (W1, . . . ,W`) satisfy σmin(Wi) ≥ τ for

τ > 0. Then f(W1, . . . ,W`) satisfies the following PL inequality:

1

2

∣∣∣∣
∣∣∣∣

∂f

∂(W1, . . . ,W`)

∣∣∣∣
∣∣∣∣
2

F

≥ `τ 2`−2

‖(XXT)−1X‖2F
(f(W1, . . . ,W`)− f ∗).

Proof. By Lemma 8.23 and Lemma 8.22 we find:

1

2

∣∣∣∣
∣∣∣∣

∂f

∂(W1, . . . ,W`)

∣∣∣∣
∣∣∣∣
2

F

≥ `τ 2`−2
1

2
‖(WX − Y)XT‖2F

≥ `τ 2`−2
1

‖(XXT)−1X‖2F
1

2
(‖WX − Y ‖2F − ‖Y X+X − Y ‖2F)

=
`τ 2`−2

‖(XXT)−1X‖2F
(f(W1, . . . ,W`)− f ∗).

153

In other words, taking

µ =
`τ 2`−2

‖(XXT)−1X‖2F
,

then at every point (W1, . . . ,W`) satisfying σmin(Wi) ≥ τ , the loss function of our linear

network satisfies the PL condition with parameter µ.

154

Chapter 9

Stability of Some First-order

Methods

Recipe 12: Ginger Peach Pie

Ingredients

• Pie dough, enough for 2 crusts (see

Recipe 1)

• 3 1
2 pounds peaches

• 1 lemon

• 1
4 cup sugar

• 1
4 cup brown sugar

• 3 tablespoon cornstarch

• 1
4 teaspoon cinnamon

• Nutmeg, to taste

• 1
4 teaspoon salt

• 1 heaping teaspoon ground ginger

• 1 egg yolk

Preparation

1. Preheat oven to 425◦ F. Roll one

dough out and transfer to a 9-inch

pie pan. Trim overhang and return to

fridge.

2. Halve and pit the peaches, and then

cut into 1
3 -inch slices. Add to a large

bowl with juice of 1
2 of the lemon and

a 1
2 teaspoon of lemon zest.

3. In a small dish, stir together remain-

ing dry ingredients. Add to bowl of

155

peaches and toss to coat evenly.

4. Scoop filling into the bottom pie

dough including juices. Roll out top

dough and add decorative vents (or

make a lattice crust). Mix egg yolk

with a teaspoon of water and brush

crust. Sprinkle with sugar.

5. Bake for 20 minutes until the crust be-

gins to brown. Reduce temperature

to 375◦ F and bake for another 30-

40 minutes, until filling is bubbling.

Loosely cover with foil if the crust is

ever browning too quickly.

9.1 Stability for Strongly Convex and PL Loss Func-

tions

We wish to apply our bounds from the previous section to popular convergent gradient-

based methods. We consider SGD, GD, RCD, and SVRG. When we have L-Lipschitz,

µ-PL loss functions fS and n training examples, Theorem 8.17 states that any learning

algorithm A has uniform stability εstab satisfying

εstab ≤ O

(
L

√
εA
µ

)
+O

(
L2

µn

)
.

Here, εA refers to how quickly A converges to the optimal value of the loss function.

Specifically, this holds if the algorithm produces a model wS satisfying |fS(ws)− f ∗S| ≤

O(εA). For example, if we want to guarantee that our algorithm has the same stability

as SGD in the strongly convex case, then we need to determine how many iterations T

156

we need to perform such that

εA = O

(
L2

µn

)
. (9.1)

The convergence rates of SGD, GD, RCD, and SVRG have been studied extensively

in the literature [16, 46, 48, 68, 69]. The results are given below. We assume that the loss

function is β-smooth. When necessary to state the result, we assume a constant step-size

of γ. Figure 12 below summarizes the values of εA for T iterations of SGD, GD, RCD,

and SVRG applied to λ-strongly convex loss functions and µ-PL loss functions. For

RCD, we assume that the gradient is coordinate-wise β-Lipschitz and that the feature

vectors x are d-dimensional. For SVRG, we assume that we compute a full gradient

after every m iterations of stochastic gradient updates.

Note that if Eq. (9.1) holds, then Corollary 8.14 implies that our algorithm is uni-

formly stable with parameter εstab = O(L2/µn). Moreover, this is the same stability as

that of SGD for strongly-convex functions [43], and saddle point avoiding algorithms on

strict-saddle loss functions [39].

We use the above convergence rates of these algorithms in the λ-strongly convex and

µ-PL settings to determine how many iterations are required such that we get stability

that is O(L2/µn). The results are summarized in Figure 13 below.

Note that in the µ-PL case, although it is a non-convex setup the above algorithms all

exhibit the same stability for these values of T . This is not the case in general. Several

studies have observed that small-batch SGD offers superior generalization performance

compared to large-batch SGD and full-batch GD when training deep neural networks

[50].

157

λ-SC µ-PL

SGD O

(
(1− 2γλ)T +

γβ2

2λ

)
[16] O

(
(1− 2γµ)T +

γβ2

2µ

)
[48]

GD O

((
1− λ

β

)T)
[69] O

((
1− µ

β

)T)
[48]

RCD O

((
1− λ

dβ

)T)
[68] O

((
1− µ

dβ

)T)
[48]

SVRG O

((
1

λγ(1− 2βγ)m
+

2βγ

1− 2βγ

)T)
[46] O

((
1

µγ(1− 2βγ)m
+

2βγ

1− 2βγ

)T)
[48]

Figure 12: Convergence rates for T iterations of various gradient-based algorithms in
the λ-SC and µ-PL settings.

9.2 Stability of Gradient Descent for Convex Loss

Functions

In [43], Hardt et al. proved bounds on the uniform stability of SGD. They also noted

that GD does not appear to be provably as stable for the non-convex case and sketched

a situation in which this difference would appear. Due to the similarity of SGD and GD,

one may expect similar uniform stability. This holds for convex loss functions, setting

as we show below.

In [43], Hardt et al. show the following theorem.

Theorem 9.1 ([43]). Let `(·; z) be L-Lipschitz, β-smooth, and convex for all z. Say we

perform T iterations of SGD with a constant step-size γ ≤ 2/β to train iterates wt on S

158

λ-SC µ-PL

SGD O

(
βn

L2λ

)
O

(
βn

L2µ

)

GD O

 log

(
L
λn

)

log
(

1− λ
β

)

 O

log
(
L
µn

)

log
(

1− µ
β

)

RCD O

 log

(
L
λn

)

log
(

1− λ
dβ

)

 O

log
(
L
µn

)

log
(

1− µ
dβ

)

SVRG O

 log

(
L
λn

)

log
(

1
λγ(1−2βγ)m + 2βγ

1−2βγ

)

 O

log
(
L
µn

)

log
(

1
µγ(1−2βγ)m + 2βγ

1−2βγ

)

Figure 13: The number of iterations T that achieves stability εstab = O(L2/µn) for
various gradient-based algorithms with step-size γ in the λ-SC and µ-PL settings.

and ŵt on S ′. Then for all such S, S ′ with |S| = |S ′| = n such that S, S ′ differ in at

most one example,

EA[‖wT − ŵT‖2] ≤
2γLT

n

If `(·; z) is λ-strongly convex for all z, then

EA[‖wT − ŵT‖2] ≤
2L

λn

Performing similar analysis for gradient descent, we obtain the following theorem.

Theorem 9.2. Assume that for all z, `(·; z) is convex, β-smooth, and L-Lipschitz. Say

we run GD for T iterations with step-sizes γt such that γt ≤ 2
β

. Then GD is uniformly

159

stable with

εstab ≤
2L2

n

T∑

t=0

γt.

If `(·; z) is λ-strongly convex for all z, then GD is uniformly stable with

εstab ≤
2L

λn
.

To prove this theorem, we use similar techniques to those in [43]. We first consider

the convex case.

Proof. By direct computation, we have:

‖wT − ŵT‖2 = ‖wT−1 − ŵT−1 −
γT
n

n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)

− γT
n
∇`(wT−1; zn) +

γT
n
∇`(ŵT−1; z′n)‖2

≤ ‖wT−1 − ŵT−1 −
γT
n

n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)
‖2

+ ‖γT
n
∇`(wT−1; zn)− γT

n
∇`(ŵT−1; z′n)‖2.

Note that since `(·; z) is L-Lipschitz, the second part of this summand is bounded

by
2γTL

n
. We now wish to bound the first part. We get:

160

‖wT−1 − ŵT−1 −
γT
n

n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)
‖22

= ‖wT−1 − ŵT−1‖22 −
2γT
n
〈wT−1 − ŵT−1,

n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)
〉

+
γ2T
n2
‖
n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)
‖22

≤ ‖wT−1 − ŵT−1‖22 −
n−1∑

i=1

(
2γT
n2
〈wT−1 − ŵT−1,∇`(wT−1; zi)−∇`(ŵT−1; zi)〉

)

+
n−1∑

i=1

(
γ2T
n2
‖∇`(wT−1; zi)−∇`(ŵT−1; zi)‖22

)

≤ ‖wT−1 − ŵT−1‖22 +
n−1∑

i=1

(
γ2T
n2
− 2γT
n2β

)‖∇`(wT−1; zi)−∇`(ŵT−1; zi)‖22.

Note that this last step holds by co-coercivity of the gradient of `(·, zi). In particular,

if γT ≤ 2
β
, each of the n − 1 summands on the right will be nonpositive. Therefore for

such γT , we get:

‖wT−1 − ŵT−1 −
γT
n

n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)
‖2 ≤ ‖wT−1 − ŵT−1‖2.

So, if γt
n
≤ 2

β
for all t, we get:

‖wT − ŵT‖2 ≤ ‖wT−1 − ŵT−1‖2 +
2γTL

n

≤ ‖wT−2 − ŵT−2‖2 +
2L

n
(γT−1 + γT)

...

≤ ‖w0 − ŵ0‖2 +
2L

n

T∑

t=1

γt

=
2L

n

T∑

t=1

γt.

161

This last step follows from the fact that w0 = ŵ0 if we initialize at the same point.

Using the fact that f(w) is L-Lipschitz (since ` is), we get:

|f(wT ; z)− f(ŵT ; z)| ≤ 2L2

n

n∑

t=0

γt.

We now move to the λ-strongly convex case. For simplicity of analysis, we assume

that we use a constant step-size γ such that γ ≤ 1/β.

Proof. The proof remains the same, except when using co-coercivity. Under this as-

sumption, some plug and play in an analogous fashion will show:

‖wT−1 − ŵT−1 −
γT
n

n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)
‖22

≤
(

1− 2γλβ

λ+ β

)
‖wT−1 − ŵT−1‖22

+
n−1∑

i=1

(
γ2T
n2
− 2γT

nβ
)‖∇`(wT−1; zi)−∇`(ŵT−1; zi)‖22.

Note that if γ ≤ 1
β

then the second term is nonnegative and one can show that this

implies:

‖wT−1 − ŵT−1 −
γT
n

n−1∑

i=1

(
∇`(wT−1; zi)−∇`(ŵT−1; zi)

)
‖2

≤
(

1− γλ
)
‖wT−1 − ŵT−1‖2.

Combining, this shows:

162

‖wT − ŵT−1‖2 ≤ (1− γλ)‖wT−1 − ŵT−1‖2 +
2Lγ

n

≤ (1− γλ)2‖wT−2 − ŵT−2‖2 +
2Lγ

n

(
1 + (1− γλ)

)

...

≤ 2Lγ

n

T∑

t=0

(1− γλ)t

≤ 2L

λn
.

This implies uniform stability with parameter 2L2

λn
.

9.3 Instability of Gradient Descent for Non-convex

Loss Functions

This similarity breaks down in the non-convex setting. Below we construct an explicit

example where GD is not uniformly stable, but SGD is. This example formalizes the

intuition given in [43].

For x,w ∈ Rm and y ∈ R, we let

`(w; (x, y)) = (〈w, x〉2 + 〈w, x〉 − y)2.

Intuitively, this is a generalized quadratic model where the predicted label ŷ for a given

x is given by

ŷ = 〈w, x〉2 + 〈w, x〉.

The above predictive model can be described by the following 1-layer neural network

using a quadratic and a linear activation function, denoted z2 and z.

163

Figure 14: A neural network representing a generalized quadratic model.

Note that for a fixed x, y, `(w; (x, y)) is non-convex, i.e., it is a quartic polynomial in

the weight vector w. We will use this function and construct data sets S, S ′ that differ

in only one entry, for which GD produces significantly different models. We consider

this loss function for all z = (x, y) with ‖z‖2 ≤ C for C sufficiently large. When m = 1,

the loss function simplifies to

`(w; (x, y)) = (w2x2 + wx− y)2.

Consider `(w; (x, y)) at (−1, 1) and (−1
2
, 1). Their graphs are as follows. We also graph

g(w) which we define as

g(w) =
1

2

(
`
(
w; (−1, 1)

)
+ `
(
w; (
−1

2
, 1)
))
.

Note that the last function has two distinct basins of different heights. Taking the

gradient, one can show that the right-most function in Figure 15 has zero slope at

ŵ ≈ 0.598004. Comparing `(w; (−1, 1)) and `(w; (−1
2
, 1)), we see that the sign of their

slopes agrees on (−1
2
, 1
2
) and on (1, 3

2
). The slopes are of different sign in the interval

[1
2
, 1]. We will use this to our advantage in showing that gradient descent is not stable,

164

Figure 15: Graphs of the functions `(w; (−1, 1)) (left), `(w; (−12 , 1)) (middle), and g(w) =
1
2 [`(w; (−1, 1)) + `(w; (−12 , 1))] (right).

while that SGD is.

We will construct points (x1, y1) and (x2, y2) such that `(w; (x1, y1)) and `(w; (x2, y2))

have positive and negative slope at ŵ. To do so, we will first construct an example with

a slope of zero at ŵ. A straightforward computation shows that `(w; (−1
2ŵ
, 0)) has slope

zero at ŵ. A graph of this loss function is given below. Note that ŵ corresponds to the

concave-down critical point in between the two global minima.

Figure 16: Graph of the function `(w; (− 1
2ŵ), 0). By construction, this function has critical

points at w = 0, ŵ, 2ŵ.

Define

z± =

(
−1

2(ŵ ± ε)
, 0

)
.

Straightforward calculations show that `(w; (z+, 0)) will have positive slope for w ∈

(0, ŵ + ε), while `(w; (z−, 0)) will have negative slope for w ∈ (ŵ − ε, 2(ŵ − ε)). In

165

particular, their slopes have opposite signs in the interval (ŵ − ε, ŵ + ε). Define

S = {z1, . . . , zn−1, z−}

S ′ = {z1, . . . , zn−1, z+},

where zi = (−1, 1) for 1 ≤ i ≤ n−1
2

, zi = (−1/2, 1) for n−1
2
< i ≤ n− 1. By construction,

we have

fS(w) =
n− 1

n
g(w) + `

(
w;

(
−1

2(ŵ + ε)
, 0

))
.

fS′(w) =
n− 1

n
g(w) + `

(
w;

(
−1

2(ŵ − ε)
, 0

))
.

Then fS(w), fS′(w) will approximately have the shape of the right-most function in

Figure 15 above. However, recall that d
dw
g(w) = 0 at w = ŵ. Therefore, there is some

δ, with 0 < δ < ε, such that for all w ∈ (ŵ − δ, ŵ + δ),

d

dw
fS(w) < 0 <

d

dw
fS′(w). (9.2)

Now say that we initialize gradient descent with some step-size γ > 0 in the interval

(w − δ, w + δ). By (9.2), the first step of gradient descent on fS will produce a step

moving to the left, but a step moving to the right for fS′ . This will hold for all γ > 0.

Moreover, the iterations for fS will continue to move to towards the left basin, while the

iterations for fS′ will continue to move to the right basin since `(w; (z+, 0)) has positive

slope for w ∈ (0, ŵ + ε) while `(w; (z−, 0)) has negative slope for w ∈ (ŵ − ε, 2(ŵ − ε),

and that g(w) has positive slope for w ∈ (−1
2
, ŵ) and negative slope for w ∈ (ŵ, 3

2
).

After enough iterations of gradient descent on fS, fS′ , we will obtain models wS and

wS′ that are close to the distinct local minima in the right-most graph in Figure 15.

This will hold as long as γ is not extremely large, in which case the steps of gradient

166

descent could simply jump from one local minima to another. To ensure this does not

happen, we restrict to γ ≤ 1.

Let w1 < w2 denote the two local minima of g(w). For z∗ = (−1/2, 1), plugging

these values into `(w; z∗) shows that |`(w1; z
∗)− `(w2; z

∗)| > 1. Since wS is close to w1

and wS′ is close to w2, we get the following theorem.

Theorem 9.3. For all n, for all step-sizes 0 < γ ≤ 1, there is a K such that for all

k ≥ K, there are data sets S, S ′ of size n differing in one entry and a non-zero measure

set of initial starting points such that if we perform k iterations of gradient descent with

step-size γ on S and S ′ to get outputs A(S),A(S ′) then there is a z∗ such that

|`(A(S); z∗)− `(A(S ′); z∗)| ≥ 1

2
.

Theorem 9.3 establishes that there exist simple non-convex settings, for which the

uniform stability of gradient descent does not decrease with n. In light of the work

in [43], where the authors show that for very conservative step-sizes, SGD is stable on

non-convex loss function, we might wonder whether SGD is stable in this setting with

moderate step-sizes. We know that gradient descent is not stable, by Theorem 9.3, for

γ = 1. For simplicity of analysis, we focus on the case where γ = 1.

Suppose we run SGD on the above fS, fS′ with step-size 1 and initialize near ŵ (we

will be more concrete later about where we initialize). With probability n−1
n

, the first

iteration of SGD will use the same example for both S and S ′, either z = (−1, 1) or

z = (−1/2, 1). Computing derivatives at ŵ shows

d

dw
`(w; (−1, 1))

∣∣∣∣
w=ŵ

≈ −0.486254.

d

dw
`(w; (−1

2
, 1))

∣∣∣∣
w=ŵ

≈ 0.486254.

167

In both cases, the slope is at least 0.4. Therefore, there is some η such that for all

w ∈ [ŵ − η, ŵ + η],

d

dw
`(w; (−1, 1)) < −0.4.

d

dw
`(w; (−1

2
, 1)) > 0.4.

Since we are taking γ = 1 and ŵ ≈ 0.598004, this implies that with probability n−1
n

,

after one step of SGD we move outside of the interval (0.5, 1). This is important since

this is the interval where `(w; (−1, 1)) and `(w; (−1/2, 1)) have slopes that point them

towards distinct basins. Similarly, outside of this interval we also have that the slopes

of `(w; (z±, 0)) point towards the same basin.

Therefore, continuing to run SGD in this setting, even if we now decrease the step-

size, will eventually lead us to the same basins of fS(w), fS′(w). Let wS, wS′ denote the

outputs of SGD in this setting after enough steps so that we get convergence to within

1
n

of a local minima. If our first sample z was (−1, 1), we will end up in the right basin,

while if our first sample z was (−1/2, 1), we will end up in the left basin. In particular,

for ε small, z± are close enough that the minima of fS, fS′ are within 1
n

of each other.

Note that the minima w1, w2 that wS, wS′ are converging to are different. However,

because they are in the same basin we know that for ε small, z± are close enough that

‖wS − wS′‖2 ≤ O(1
n
). Therefore, we have

‖wS − wS′‖2 ≤ O

(
1

n

)
.

Note that in our proof of the instability of gradient descent, we only needed to look at

z satisfying ‖z‖2 ≤ 2 to see the instability. However, for SGD if we restrict to ‖z‖2 ≤ 2,

then by compactness we know that `(w; z) will be Lipschitz. Therefore, with probability

168

n−1
n

,

‖`(wS; z)− `(wS′ ; z)‖2 ≤ L‖wS − wS′‖2 ≤ O

(
1

n

)
.

With probability 1
n
, SGD first sees the example on which S, S ′ differ. In this case,

wS, wS′ may end up in different basins of the right-most graph in Figure 15. Restricting

to ‖z‖2 ≤ 2, by compactness we have |`(wS; z) − `(wS′ ; z)| ≤ C for some constant

C. Therefore, |`(wS; z) − `(wS′ ; z)| = O(1/n) with probability 1 − 1/n and |`(wS; z) −

`(wS′ ; z)| = O(1) with probability 1/n. This implies the following theorem.

Theorem 9.4. Suppose that we initialize SGD in [ŵ−η, ŵ+η] with a step-size of γ = 1.

Let A(S),A(S ′) denote the output of SGD after k iteration for sufficiently large k. For

‖z‖2 ≤ 2,

EA
[
`(A(S); z)− `(A(S ′); z)

]
≤ O

(
1

n

)
.

This is in stark contrast to gradient descent, which is unstable in this setting. While

work in [105] suggests that this stability of SGD even in non-convex settings is a more

general phenomenon, proving that this holds remains an open problem.

169

Part IV

Distributed Machine Learning and

Gradient Coding

170

Chapter 10

Gradient Coding

Recipe 13: Hearty Wheat Bread

Ingredients

• 1 1
4 lukewarm water

• 2 teaspoons active dry yeast

• 1 cup whole milk

• 1
4 cup honey

• 2 tablespoons neutral oil

• 2 3
4 cups all-purpose flour

• 2 3
4 cups wheat flour

• 1 tablespoon salt

Preparation

1. Pour water in to a bowl and sprinkle

yeast on top. Mix in milk, honey, and

oil.

2. Add two cups all-purpose flour and

salt, stirring to combine. Add the re-

maining all-purpose and wheat flours.

Stir to form a shaggy dough. Let

stand for 20 minutes.

3. Knead dough until it forms a ball

without sagging, adding flour if sticky.

Clean out bowl and coat with oil.

Place dough in bowl and cover with

plastic wrap. Let dough rise for 1 1
2

hours.

4. Divide dough in two and shape each

half into a loose ball. Let rest for 10

minutes.

5. Grease two 8×4 loaf pans. Shape

171

dough balls into loaves and place in

pans. Let rise for 30 minutes.

6. Heat oven to 425◦ F. Slash tops of

risen loaves with a serrated knife and

place in oven. Turn down heat to 375◦

F and bake for 30 minutes or until the

tops are a dark golden-brown color.

10.1 Background

10.1.1 Distributed Computation and the Straggler Effect

Over the last decade, more and more computation is being shifted towards distributed

systems. Such systems contain multiple computers that communicate with one another

and run local computations in order to complete some task. We will refer to such

computers as compute nodes. We generally represent these systems as a graph, where

we have vertices connected via edges. The compute nodes form the vertices, and the

edges represent the other nodes with which a given node can communicate. Additionally,

there are parallel systems, in which we have multiple computers, but they have a shared

memory. By contrast, in distributed systems each compute node only has its own local

memory. If we want to share information between nodes, then we have to send messages

between the computers. Figures 17a and 17b below illustrate the difference between

these setups.

In this chapter, we will focus on distributed computation. In particular, we will

consider a master-worker setup. In such setups, there is a single master node that

assigns tasks to each of the compute nodes. The compute nodes each complete their

172

(a) A distributed system with three compute
nodes.

(b) A parallel system with three compute
nodes.

tasks locally, and send them back to the master node.

For example, suppose that we have a large collection of votes from a recent election.

We could get one person to look through the votes and count how many went to each

candidate. This would be unbearably slow. Instead, we have a coordinator who assigns

some number of votes to each person working for them. These workers then add up how

many votes went to each candidate. The coordinator can then amalgamate the results

and determine who won the election.

This setup is particularly important due to its relative simplicity and its appearance

in practical distributed systems. Many modern distributed systems such as ApacheSpark

[103] and MapReduce [24] can often be considered as a master-worker setup. A pictorial

173

representation of a master-worker setup is given in Figure 18.

Figure 18: A master-worker with three compute nodes.

In practice, the advent of big data means that we often have access to enormous

amounts of data when trying to solve a given problem. As a result, distributed systems

have become the de facto choice for scaling out computations to these massive data

sets. There are large amounts of theoretical work that quantify how much faster a

distributed system is than a single computer. Of course, this only says how much

faster the distributed system is theoretically. In practice, distributed systems generally

compute tasks faster than single computers, but not as fast as existing theory dictates

they should [23, 76]. This commonly observed behavior is referred to as the speedup

saturation phenomenon. Speedup saturation has many causes. These include the time

it takes compute nodes to communicate, shared computing resources between nodes,

maintenance activities on the network, and physical issues such as hardware failure

and limits on power among the entires system [23, 100]. All these factors often cause

some of the compute nodes to take significantly more time to finish their computations

than expected. This leads to the presence of straggler nodes. These are compute nodes

that are substantially slower than the average in the system. We would like to design

174

distributed algorithms in a way that we do not have to wait for straggler nodes to finish

their computations.

10.1.2 Distributed Machine Learning

Due to the large amounts of data used in modern machine learning frameworks, there

has been enormous interest in finding ways to perform machine learning in a distributed

manner. This can be done in a synchronous or an asynchronous manner. In the former,

we wait for all of the compute nodes to finish and then assign them the next round of

tasks. In the asynchronous version, as soon as a compute node finishes, we assign it a

new task, whether or not the rest of the nodes are done.

To train machine learning algorithms, we typically use so-called gradient methods.

For the purposes of this work, there are two salient points about these algorithms. First,

they all involve the computation of gradients, which measure the accuracy of a machine

learning model. By updating the model according to the gradients, we can improve its

accuracy. Second, in most applications we have to compute one gradient for each data

point. If we are training a computer to do medical diagnosis on a population of patients,

we would need to compute one gradient per patient to update our model. In practice,

we may have to update the model thousands or millions of times, so we would like to

reduce the amount of time it takes to compute these gradients.

Suppose that we have a master-worker system and would like to use a gradient

method to train a machine learning model. If we have k training examples, then each

step of our gradient method will require k gradient computations. If we have n compute

nodes, then we can task each compute node with k
n

gradient computations. The compute

175

nodes then sends their computed gradients to the master, which updates the machine

learning model accordingly. The algorithm we just described is one step of synchronous

gradient descent, where the synchronous part refers to the fact that we wait until all

nodes are done computing before we update the model. This kind of idea is relevant to

many popular gradient methods, such as mini-batch stochastic gradient descent.

The runtime of synchronous gradient descent is dictated by the runtime of the slowest

compute node. If one of the compute nodes in our system takes an hour to compute its

gradients, while the rest only take a minute, we still need to wait for the entire hour. In

the language of the preceding section, stragglers can greatly impact the runtime.

For example, suppose we have a master-worker system with 4 compute nodes and 4

gradients to compute. As a first step, we could assign 1 gradient to each compute node.

We would then have to wait for all 4 nodes to finish to find all the gradients. A pictorial

representation of this system is given in Figure 19 below.

Figure 19: A master-worker system with 4 workers and 1 gradient per worker.

We could instead assign gradients 1 and 2 to both compute nodes 1 and 2. These

nodes would be doing redundant work. However, notice that to compute the first two

176

gradients, we only need the output from one of these two compute nodes. We can also

assign gradients 3 and 4 to compute nodes 3 and 4. A pictorial version is given in Figure

20 below.

Figure 20: A master-worker system with 4 workers and 2 gradients per worker.

In general, one can verify that once any 3 of the nodes finish, we will have all the

gradients. This means that we do not have to wait for the slowest node to finish. By

doing some redundant computations, we have reduced the impact of stragglers. This

comes at the expense of the number of tasks per worker, which is now 2 instead of 1. In

general, there is a trade-off between redundancy, and the effect of stragglers. We would

like to find ways of assigning tasks that balance the effect of stragglers and the number

of tasks each node needs to compute.

There have also been many proposed asynchronous algorithms for distributed ma-

chine learning such as HOGWILD! [79]. In such algorithms, the machine learning model

is updated each time any compute node finishes its task. In order to analyze the ob-

tained model, most analyses of HOGWILD! assume a maximum amount of time that any

177

compute node takes to complete its tasks. Straggler nodes can make this assumption un-

realistic in practical scenarios and can adversely affect the quality of the learned model.

In both synchronous and asynchronous machine learning, we would like strategies to

mitigate the effect of stragglers.

10.2 Previous Work

Several methods for mitigating the effect of stragglers have been recently proposed.

These approaches include replicating jobs across redundant nodes and dropping strag-

glers in the case that the underlying computation is robust to errors [1, 83, 94]. The

authors of [21] propose the use of redundant computations to avoid the effect of stragglers

and improve the performance of traditional model training algorithms.

Recently, tools from coding theory have gained traction in an effort to mitigate strag-

glers. Lee et al. [54] proposed the use of techniques from coding theory to compensate

for stragglers and communication bottlenecks in machine learning settings, especially in

the computation of linear functions. Li et al. proposed using coding theory to reduce

inter-server communication in the shuffling phase of MapReduce [56]. In [80], researchers

proposed another coding-theoretic algorithm for speeding up distributed matrix multipli-

cation in heterogeneous clusters. The use of codes for distributed matrix multiplication

and linear operations on functions was also studied in [27], which analyzes the trade-off

between the flexibility and sparsity of the code.

In [89], the authors propose gradient coding, a technique to exactly recover the sum

of gradients from a subset of compute nodes. The authors show that we can recover k

gradients from a subset of k−s compute nodes, where each node computes s+1 gradients.

178

In other words, the algorithm is robust to s stragglers. Gradient coding is particularly

relevant to synchronous distributed learning algorithms that involve computing sums of

gradients, such as mini-batch stochastic gradient descent and full-batch gradient descent.

While the gradient code construction in [89] was randomized, the authors in [78] use

deterministic codes based on expander graphs to achieve similar results.

Most of the above results focus on exact reconstruction of a sum of functions. In

many practical distributed settings, we may only require approximate reconstruction of

the sum. In particular, parallel model training in machine learning settings has been

shown to be robust to noise [64]. In some scenarios, noisy gradients may even improve

the generalization performance of the trained model [67]. By only approximately recon-

structing the desired function, we hope to increase the speed and tolerance to stragglers

of our distributed algorithm. In fact, expander graphs, particularly Ramanujan graphs,

can be used for such approximate reconstruction [78]. Unfortunately, expander graphs,

especially Ramanujan graphs, can be expensive to compute in practice, especially for

large numbers of compute nodes. Moreover, the desired parameters of the construction

may be constrained according to underlying combinatorial rules.

10.2.1 Our Contributions

In this work, we use sparse graphs to create gradient codes capable of efficiently and

accurately computing approximate gradients. More generally, these codes can be used

to approximately recover any sum of functions. We formally introduce the approximate

recovery problem and give a coding–theoretic interpretation of it. We also present and

analyze two decoding techniques for approximate reconstruction, an optimal decoding

179

algorithm that has polynomial-time complexity, and an inexact decoding method that

has linear complexity in the sparsity of the input.

We focus on two different codes that are efficiently computable and require only a

logarithmic number of tasks per compute node. The first code is the Fractional Repeti-

tion Code (FRC) proposed in [89]. We show that FRCs can achieve small or zero error

with high probability, even if a constant fraction of compute nodes are stragglers. How-

ever, we show that FRCs are susceptible to adversarial stragglers, where an adversary

selects the worst-case set of stragglers. To get around this issue, we also present the

Bernoulli Gradient Code (BGC) and the regularized Bernoulli Gradient Code (rBGC),

whose constructions are based on sparse random graphs. We show that adversarial

straggler selection in general codes is NP-hard, suggesting that these random code smay

perform better against polynomial-time adversaries. We give explicit bounds on the

error of BGCs and rBGCs that show that this potential tolerance to adversaries comes

at the expense of a worse average-case error than FRCs. We provide simulations that

support our theoretical results. These simulations show that there is a trade-off between

the decoding complexity of a gradient code and its average- and worst-case performance.

10.3 Problem Statement

In the following, we will denote vectors and matrices in bold and scalars in standard

script. For a vector v ∈ Rm, we will let ‖v‖2 refer to its `2-norm. For any matrix A,

we will let Ai,j denote its (i, j) entry and let aj denote its jth column. We will also let

‖A‖2 denote its spectral norm while σmin(A) will denote its smallest singular value. We

will let 1m denote the m× 1 all ones vector, while 1n×m will denote the all ones n×m

180

matrix. We define 0n×m analogously.

In this work, we consider a distributed master-worker setup of n compute nodes,

each of which is assigned with a maximum number of s tasks. The compute nodes can

compute locally assigned tasks and they can send messages to the master node.

. . .

worker 1 worker 2 worker n

master node

f1 f2 fk. . .

max. degree = s

Figure 21: A master-worker architecture of distributed computation with multiple cores
per machines. Each of the k functions is assigned to a subset of n compute nodes.

The goal of the master node is to compute the sum of k functions

f(x) =
k∑

i=1

fi(x) = fT1k (10.1)

in a distributed way, where fi : Rd → Rw, and any of the local functions fi can be

assigned to and computed locally by any of the n compute nodes. In order to keep local

computation manageable, we assign at most s tasks to each compute node. Due to the

straggler effect, we assume that we only get access to the output of r < n non-straggler

compute nodes. If we wish to exactly recover f(x), then we need r ≥ k − s+ 1 [89]. In

practice, we only need to approximately recover f(x), which we may be able to do with

many fewer non-stragglers.

181

The above setup is relevant to distributed learning algorithms, where we often wish

to find some model x by minimizing

`(x) =
k∑

i=1

`(x; zi).

Here {zi}ki=1 are our training samples and `(x; z) is the loss function measuring the

accuracy of the prediction served by model x with respect to data point z. In order to

find the model that minimizes the sum of losses `(x), we often use first-order, or gradient

based methods. For example, if we wanted to use gradient descent to find a good model,

we would need to compute the full gradient of `(x), given by

∇`(x) =
k∑

i=1

∇`(x; zi).

Letting fi(x) = ∇`(x; zi), we arrive at the setup in 10.1. We focus our discussion on

gradient descent for simplicity, but we note that the same setup applies for mini-batch

SGD.

Our main question is whether we can develop gradient coding techniques that are ro-

bust to larger numbers of straggler nodes, if we allow for some error in the reconstruction

of ∇`(x). We formally describe the approximate gradient coding problem below.

10.3.1 Approximate Gradient Coding

There are three components of an approximate gradient coding scheme.

1. Function assignments for each compute node.

2. The messages sent from each compute node to the master.

3. The decoding algorithm used by the master to recover an approximate sum of

gradients.

182

First, each compute node is assigned with s functions to compute locally. In some

version of the problem, we allow compute nodes to compute up to Õ(s) functions, where

Õ hides poly-log factors.

After assigning tasks to each compute node, we let the compute nodes run local

computations for some maximum amount of time. Afterwards, we may have compute

nodes that either failed to compute some functions or are still running. These are the

straggler nodes. During the approximate reconstruction of the sum, the master node

will only use the output of the non-straggler nodes. We assume we only have access to

the output of a subset of r < n of the compute nodes. We want to use their output to

compute the best approximation to f(x) given by (10.1) possible. Here we assume that

we can only linearly combine the results that the master received from the non-straggler

nodes.

More formally, the task assignments are represented by a function assignment matrix

G, a k × n matrix where the support of column j indexes the functions assigned to

compute node j. The entries of column j correspond to the coefficients of the linear

combination of these local functions that the compute node sends back to the master

once the compute node has completed its local computations.

Let A denote the k×r submatrix of G corresponding to the r non-straggler compute

nodes. The minimum recovery error for a given subset matrix A is given by

min
x

(fTAx− fT1k)2. (10.2)

To better analyze this error, we define the optimal decoding error of a matrix A.

Definition 10.1. The optimal decoding error of a non-straggler matrix A is define as

err(A) := min
x
‖Ax− 1k‖22.

183

The optimal decoding error quantifies how close 1k is to being in the span of the

columns of A. Note that if err(A) is small, then the overall minimum recovery error is

small, since

min
x

(fTAx− fT1k)2 ≤ ‖f‖22 err(A), (10.3)

For a given matrix A, let A+ denote its pseudo-inverse. Straightforward properties of

the pseudo-inverse imply

err(A) = ‖AA+1k − 1k‖22.

In general, we are interested in constructing function assignment matrices G such

that submatrices A have small decoding error. Note that we can either consider the

worst-case among all A or consider the setting where A is chosen uniformly at random.

We will refer to these G as approximate gradient codes.

Approximate gradient codes were constructed in [78] using expander graphs. The

authors show in particular that if G is the adjacency matrix of a Ramanujan graph,

then the worst-case decoding error is relatively small. Unfortunately, such graphs may

be expensive to compute in practice. To circumvent this issue, we use simplified random

constructions.

10.4 Decoding

Once we receive the non-straggler matrix A, we want to use it to approximate 1k. We

give two possible methods below. Because of the parallels to coding theory, we will refer

to these as decoding methods. The first method will be referred to as one-step decoding

because it is analogous to computing u1. The second will be referred to as optimal

decoding.

184

Algorithm 5: One-step decoding algorithm.

Input : A k × r non-straggler matrix A, ρ > 0.
Output: An approximation v to 1k
1. Set x = ρ1r.
2. Compute v = Ax.
3. Return v.

Algorithm 6: Optimal decoding algorithm.

Input : A k × r non-straggler matrix A.
Output: v = argminw ‖Aw − 1k‖22.
1. Find A+.
2. Compute x = A+1k.
3. Return v = Ax;

For the one-step decoding error, we will generally consider ρ = k
rs

. If G has s entries

in each column and row, then we would expect A to have roughly rs
k

entries in each

row. If this holds exactly, then setting ρ = k
rs

will allow us to exactly reconstruct the

gradient.

A decoding method analogous to the one-step decoding method was previously used

in [78]. Note that the one-step decoding method is more efficient to compute than the

optimal decoding, especially when A is ill-conditioned or k is large. Moreover, we can

apply the one-step decoding method even if we do not have direct access to A but can

compute matrix-vector product Ax. The one-step decoding method allows us to avoid

holding the entire matrix A in the memory of the master compute node in settings where

this is not possible.

It is straightforward to see that if v is the optimal decoding of A, then ‖v− 1k‖22 =

err(A). On the other hand, if v is the one-step decoding of A then ‖v− 1k‖22 ≥ err(A).

We define the one-step decoding error of A as follows.

185

Definition 10.2. For a given ρ > 0, the one-step error of A is defined by

err1(A) := ‖ρA1r − 1k‖22.

10.5 Mathematical Perspective and Main Results

Algebraically, we want matrices G ∈ Rk×k such that for most (or all) column submatrices

A ∈ Rk×r, the ones vector 1k is approximately in the column span of A. In general, this

question becomes more difficult when we enforce a desired column-sparsity of G. Given

A, let ΠA denote the projection on to the column span of A. When applicable, we

suppose that the columns of A are chosen through some random process. This suggests

three primary questions concerning the geometry of column-sparse matrices.

Question 10.3. How do we design a column-sparse matrix G so that

EA‖ΠA(1k)− 1k‖22

is minimized?

Question 10.4. How do we design a column-sparse matrix G so that

max
A
‖ΠA(1k)− 1k‖22

is minimized?

Question 10.5. Fix ε, δ > 0. For which s are there G with s non-zero entries in each

column such that

PA

(
‖ΠA(1k)− 1k‖22 ≥ ε

)
≤ δ.

186

To make these results practically useful, we may want to specifically design G that are

efficiently computable. Our main theorem shows that there is an efficiently computable

code that has small or zero decoding error with high probability, even with a constant

fraction of stragglers.

Theorem 10.6. Suppose that r = (1− δ)k. Then there is an efficiently computable G

with

s =
log(k)

log(1
δ
)

non-zero entries in each column such that if A is chosen uniformly at random,

PA

(
ΠA(1k) = 1k

)
≥ 1− 1

k
.

This is a simplified version of Theorem 11.5 below. Whether this G is optimal is

unknown and an interesting open question. In machine learning terms, this result implies

that for any k and a constant fraction of stragglers r, there is a code with sparsity

Θ(log(k)) that can exactly reconstruct the gradient with high probability. While this

code achieves smaller error for most A than previously designed codes, we show that

it comes at the expense of the worst-case error, which can be Θ(k). Moreover, this

worst-case be computed efficiently by an adversary.

On the other hand, we also show that in general, adversarial straggler selection is

NP-hard. In order to counter polynomial-time adversaries, we give another approximate

gradient code that utilizes randomness. We also bound the decoding error of this code.

We show the following theorem, a simpler version of Theorem 11.24 below.

Theorem 10.7. There is a randomized, efficiently computable G with at most 2s entries

in each column such that if A is chosen uniformly at random, then with probability at

187

least 1− 1
k
,

1

k
‖ΠA(1k)− 1k‖22 = O

(
1

s

)
.

188

Chapter 11

Approximate Gradient Codes

Recipe 14: Challah with Raisins

Ingredients

• 3 3
4 teaspoons active dry yeast

• 1
2 cup plus 1 tablespoon sugar

• 1 3
4 cups lukewarm water

• 1
2 cup olive oil

• 5 eggs

• 1 tablespoon salt

• 8 1
2 cups flour

• 1
2 cup raisins

Preparation

1. Place raisins in hot water and let them

get plump. Drain well.

2. In a large bowl, dissolve yeast and 1

tablespoon sugar in lukewarm water.

Set aside until foamy.

3. Whisk in oil, and 4 eggs, one at a

time, followed by the remaining sugar

and salt. Gradually add flour to form

dough. Knead until smooth.

4. Turn dough on to floured surface.

Clean and grease the bowl and return

dough to bowl. Cover with plastic

wrap and let it rise in a warm place

for 1 hour. It should come close to

doubling in size. Remove plastic wrap

and punch down dough. Cover and let

rise for another half-hour.

189

5. Knead raisins into challah and form

loaves. Place loaves on greased cookie

sheets. Beat remaining egg with 1 ta-

blespoon of water and brush loaves.

Let dough rise for another hour.

6. Heat oven to 375◦ F. Bake for 30 to 40

minutes or until golden-brown.

11.1 Fractional Repetition Codes

We would like to devise a code that achieves small error with high probability in the

setting that our stragglers are chosen randomly. In fact, this can be achieved by the

fractional repetition code (FRC) used in [89]. Note that [89] only considers this code for

exact reconstruction of the gradient over all subsets of stragglers. This code can still

be used when we only want approximately reconstruct the sum of k gradients with high

probability.

This scheme works by replicating certain tasks between compute nodes. Suppose

that we have k tasks and compute nodes and we want each compute node to compute s

tasks. Without loss of generality, we suppose that s divides k. The assignment matrix

Gfrac for this scheme is then defined by

Gfrac =

1s×s 0s×s 0s×s . . . 0s×s

0s×s 1s×s 0s×s . . .

0s×s 0s×s 1s×s . . . 0s×s

...
...

...
. . .

...

0s×s 0s×s 0s×s . . . 1s×s

.

We assume that the k×r matrix Afrac of non-stragglers has columns that are sampled

190

uniformly without replacement from the k columns of Gfrac. We first compute the

expected one-step decoding error. Let ai denote column i of Afrac.

Lemma 11.1.

E[aTi aj] =

s , i = j

s2

k
− s

k
, i 6= j

.

Proof. Fix ai. Since ai has s non-zero entries that are all 1, aTi ai = s. Next, suppose

j 6= i. By the construction of Gfrac, there are only s − 1 columns of Gfrac that are not

orthogonal to ai. Note that aj is a duplicate of ai with probability s−1
k

. If this holds,

then aTi aj = s, and it is 0 if this does not hold. Therefore, for i 6= j,

E[aTi aj] = s

(
s− 1

k

)
=
s2

k
− s

k
.

Theorem 11.2. Setting ρ = k
rs

in the one-step decoding method, we have

E [err1(Afrac)] =
δk

(1− δ)s
− 1

1− δ

(
s− 1

s

)
.

Proof. Using linearity of expectation, we have

E

[∥∥∥∥
k

rs
Afrac1r − 1k

∥∥∥∥
2

2

]
= E

[
k2

r2s2
1Tr AT

fracAfrac1r −
2k

rs
1TkAfrac1r + 1Tk 1k

]

=
k2

r2s2
1Tr E[AT

fracAfrac]1r −
2k

rs
s1Tr 1r + k

=
k2

r2s2

∑

i,j

E[aTi aj]− k.

Between step 1 and step 2 we used the fact that the columns of Afrac all have s

191

non-zero entries so 1TkAfrac = s1r. Applying Lemma 11.1,

E

[∥∥∥∥
k

rs
Afrac1r − 1k

∥∥∥∥
2

2

]
=

k2

r2s2

∑

i,j

E[aTi aj]− k

=
k2

r2s2

(
rs+ r(r − 1)

(
s2

k
− s

k

))
− k

=
k2

r2s2

(
rs+

r2s2

k
− r2s

k
− rs2

k
+
rs

k

)
− k

=
k2

rs
− k

s
− k

r
+

k

rs

=
k

s

(
k

r
− 1

)
− k

r
+

k

rs

=
δk

(1− δ)s
− 1

1− δ

(
s− 1

s

)
.

Next, we consider the optimal decoding error of Afrac. Note that each column of

Afrac has k/s distinct possibilities,

v1 =

1s

0s

...

0s

,v2 =

0s

1s

...

0s

, . . . ,vk/s =

0s

0s

...

1s

.

There are s copies of each vi in Gfrac and Afrac has a set of columns given by sampling

r of these without replacement. It is straightforward to see that err(Afrac) = αs, where

α is the number of i such that vi is not a column of Afrac.

Let Y1, . . . , Yk/s denote the random variables where Yi indicates whether every column

from the ith block is sampled. Note that we then have

err(A) =

k/s∑

i=1

sYi. (11.1)

192

Each Yi is 1 iff each of the s columns in the ith block are sampled as part of the r.

Therefore,

P(Yi = 1) =

(
k−s
r−s

)
(
k
r

) . (11.2)

Combining (11.1) and (11.2), we get the following theorem.

Theorem 11.3.

E[err(Afrac)] = k

(
k−s
r−s

)
(
k
r

) .

We would now like high-probability bounds on err(A). By (11.1), this reduces to

bounding how many of the Yi are non-zero. This can be done via standard techniques

concerning with-replacement sampling.

Theorem 11.4. If Gfrac is k × k, for all α ∈ Z≥0,

P
(

err(Afrac) ≤ αs
)
≥ 1−

(
k/s

α + 1

)(k−(α+1)s
r

)
(
k
r

) .

Proof. Fix T ⊆ {1, 2, . . . , k/s} such that |T | = α + 1. Then

P
(
∀i ∈ T, vi is not a column of Afrac

)
=

(
k−(α+1)s

r

)
(
k
r

) .

Taking a union bound, this implies

⋃

T :|T |=α+1

P
(
∀i ∈ T, vi is not a column of Afrac

)
≤
(
k/s

α + 1

)(k−(α+1)s
r

)
(
k
r

) .

Note that the probability that we have no more than α of the vi missing from the

columns of A is the probability that err(Afrac) ≤ αs. Therefore,

P
(

err(Afrac) ≤ αs
)
≥ 1−

(
k/s

α + 1

)(k−(α+1)s
r

)
(
k
r

) .

193

While this exact expression is complicated, this result easily shows that if s =

Ω(log(k)), then with probability at least 1 − 1
k
, err(A) = O(log(k)). Recall that the

number of non-stragglers r = (1− δ)k for δ ∈ (0, 1).

Theorem 11.5. Suppose

s ≥
(

1 +
1

1 + α

)
log(k)

1− δ
.

Then

P
(

err(Afrac) > αs
)
≤ 1

k
.

Proof. By Theorem 11.4, we have

P
(

err(Afrac) > αs
)
≤
(
k/s

α + 1

)(k−(α+1)s
r

)
(
k
r

) .

Simple estimates show

(
k−(α+1)s

r

)
(
k
r

) =
(k − (α + 1)s)(k − (α + 1)s− 1) . . . (k − (α + 1)s− r + 1)

k(k − 1) . . . (k − r + 1)

≤
(

(k − (α + 1)s)

k

)r
.

Therefore,

P
(

err(Afrac) > αs
)
≤ kα+1

(
(k − (α + 1)s)

k

)r
.

We wish to show that for s ≥ (1+ 1
1+α

) log(k)/(1−δ), the right-hand side of this equation

is at most 1
k
. Manipulating, this is equivalent to s satisfying

(α + 1)s

k
≥
(
1− k−(α+2)/r

)
. (11.3)

Since s ≥ (1 + 1
1+α

) log(k)/(1− δ), we have

(α + 1)s

k
≥ (α + 2) log(k)

r
. (11.4)

194

Letting β = (α + 2) log(k)/r, (11.4) implies that (11.3) holds if

β ≥ 1− e−β.

Since this occurs for all β ≥ 0, the desired result is shown.

Corollary 11.6. Suppose

s ≥ 2 log(k)

1− δ
.

Then

P
(

err(Afrac) > 0
)
≤ 1

k
.

Note that this implies Theorem 10.6. While FRCs have demonstrably small optimal

decoding error when the stragglers are selected randomly, we will later show that it does

not perform well when the stragglers are selected adversarially. In order to improve our

tolerance to adversarial stragglers, we will develop a coding scheme based on random

graphs.

11.2 Adversarial Stragglers

11.2.1 Adversarial Stragglers and Fractional Repetition Codes

While FRCs have small average-case error, their worst case-error is large. Worse, it

is computationally efficient to find these worst-case straggler sets. In fact, they can be

found in linear time in the number of compute nodes. Recall that the assignment matrix

195

Gfrac for FRC is defined by

Gfrac =

1s×s 0s×s 0s×s . . . 0s×s

0s×s 1s×s 0s×s . . .

0s×s 0s×s 1s×s . . . 0s×s

...
...

...
. . .

...

0s×s 0s×s 0s×s . . . 1s×s

.

As previously noted, each column of Afrac has k/s distinct possibilities,

v1 =

1s

0s

...

0s

,v2 =

0s

1s

...

0s

, . . . ,vk/s =

0s

0s

...

1s

.

There are s copies of each vi in Gfrac. As long as one instance of vi is a non-

straggler, then we will recover these s entries in 1k. If all s are stragglers, then our

optimal decoding vector x̃ = argminx ‖Ax− 1k‖22 will have zeros in the corresponding s

entries. This contributes s to the optimal decoding error.

One can therefore see that if we wish to pick r non-stragglers adversarially, then we

would pick all of the s copies of each vi above, for a total of r/s blocks. Here, we assume

that s divides r for simplicity. Without loss of generality, we can simply select the first

r columns of Gfrac to be non-stragglers. If Gfrac has its columns permuted then we can

simply select all columns corresponding to the first r/s blocks. There are then (k− r)/s

blocks missing from A. Each contributes s to the optimal decoding error.

Furthermore, the optimal decoding error increases by s if and only if all of the strag-

glers corresponding to one of the k/s blocks are all stragglers. Therefore, the adversarial

196

selection described above gives the worst-case error for this scheme. Moreover, the ad-

versary can find this set in O(k) operations if they have full-knowledge of what coding

scheme is being used. Even if they do not have this knowledge, an adversary can check

for this coding scheme and find the worst-case straggler set in O(sk) operations if they

only have access to the matrix G. This implies the following theorem.

Theorem 11.7. Suppose that the non-stragglers are selected adversarially. In the worst-

case, the non-straggler matrix A will satisfy

err(A) = k − r.

Moreover, worst-case straggler sets can be found in polynomial time.

Note that assuming that r = (1 − δ)k for some constant δ, then the adversarial

optimal decoding error is Θ(k). This is in stark contrast to Theorem 11.5, which showed

that if the stragglers are selected randomly and s = Ω(log k), then with high probability

err(A) = O(log k). Also note that since err1(A) ≥ err(A), we derive the same adversarial

result for the one-step decoding error.

11.2.2 Adversarial Straggler Selection is NP-hard

In this section, we discuss what happens when the stragglers are chosen adversarially

instead of randomly. We show that adversarial straggler selection is NP-hard. This

demonstrates that in general, adversaries with polynomial-time computations cannot

find the set of stragglers that maximizes the decoding error. In such cases, the average-

case error may be a more useful indicator of how well a gradient code performs.

To show that general adversarial selection is NP-hard, we first define two problems.

197

Definition 11.8 (Densest k-Subgraph Problem). The k-densest subgraph problem (DkS)

asks, given a graph (V,E), what k-vertex subgraph contains the most edges.

As shown in [3], this problem is NP-hard, even if we restrict to regular graphs. We

now formally define the adversarial straggler problem.

Definition 11.9 (Adversarial Straggler Problem). Fix a constant ρ > 0. The r-

adversarial straggler problem (r-ASP) asks, given a square matrix G ∈ Rn×n, which

column-submatrix A maximizes

‖ρA1r − 1n‖22.

Note that this is the form that one-step decoding takes. We will show that for any

ρ ∈ (0, 2
3
), this problem is NP-hard, even when we restrict to G ∈ {0, 1}k×k with at

most s non-zero entries in each column.

Theorem 11.10. For any ρ ∈ (0, 2
3
), the adversarial straggler problem is NP-hard. This

holds even if we restrict to matrices G ∈ Rk×k with entries in {0, 1} and at most s ≥ 2

non-zero entries per column.

In fact, the proof of our theorem also shows that if we instead consider all matrices

G ∈ Rk×n where k ≥ n, then r-ASP is NP-hard for any ρ > 0.

Proof. We will give a reduction from DkS on d-regular graphs to r-ASP where G is

boolean with at most d non-zero entries per column.

Let (V,E) be a d-regular graph on n vertices. Note that |E| = nd. We want to

solve DkS for (V,E). Let M denote the adjacency matrix of (V,E). Note that DkS is

equivalent to

max
x

xTMx s.t. x ∈ {0, 1}n, ‖x‖0 = k.

198

Let B denote the unsigned incidence matrix of (V,E). That is, B is a |E|×|V | boolean

matrix where the row corresponding to edge e has a 1 in column v iff e is incident to v.

We will let C denote the |E| × |E| matrix given by adding |E| − |V | = n(d − 1) zero

columns to B. Note that C is a square nd×nd boolean matrix with at most d non-zero

entries in each column since (V,E) is d-regular.

Let r = k + (n − 1)d. Consider r-ASP on C. This is equivalent to finding a vector

x ∈ {0, 1}|E| with ‖x‖0 = r that maximizes

‖ρCx− 1nd‖22.

Straightforward computations show

‖ρCx− 1nd‖22 = ρ2xTCTCx− 2ρ1TndCx + 1Tnd1nd

= ρ2xTCTCx− 2ρ[d1Tn 0Tn(d−1)]x + nd.

Let x =

y

z

 where y ∈ {0, 1}n, z ∈ {0, 1}n(d−1). Note that y corresponds to which

of the columns of B we select, while z corresponds to columns of 0 we select. Recall

that ‖y‖0 + ‖z‖0 = r = t+ n(d− 1).

Note that BTB = M + Id. This implies

CTC =

M + Id 0

0 0

 .

We then get

‖ρCx− 1nd‖22 = ρ2xTCTCx− 2ρ[d1Tn 0Tn(d−1)]x + nd

= ρ2yTMy + dρ2yTy − 2ρd1Tny + nd

= ρ2yTMy + dρ2‖y‖0 − 2ρd‖y‖0 + nd.

199

Therefore, r-ASP in this setting is equivalent to maximizing, over y ∈ {0, 1}n, z ∈

{0, 1}n(d−1) such that ‖y‖0 + ‖z‖0 = r = k + n(d− 1), the quantity

ρ2yTMy + dρ2‖y‖0 − 2ρd‖y‖0 + nd. (11.5)

Define

f(y) = ρ2yTMy + (ρ2 − 2ρ)d‖y‖0.

Note that if we fix a binary y such that ‖y‖0 = a, then

f(y) = ρ2yTMy + (ρ2 − 2ρ)da.

Therefore, maximizing this quantity corresponds to finding the a-densest subgraph of

(V,E). We now must show that when we maximize this over y and z, then the solution

will always have ‖y‖0 = k. Since r = k+n(d− 1), it suffices to show that y is as sparse

as possible.

To show that this is the case, we will show that for ρ ∈ (0, 2
3
), increasing the sparsity

of y by 1 will only decrease the objective function. Suppose that ‖y‖0 = a and it has

support S. Say that y′ satisfies ‖y′‖0 = a+ 1 and it has support S ′ where S ⊆ S ′. Let

T, T ′ denote the vertex subgraphs of (V,E) corresponding to S, S ′, and let e(S), e(S ′)

denote the number of edges in these subgraphs. Note that yTMy = 2e(S). We then

have

f(y) = 2ρ2e(S) + (ρ2 − 2ρ)da.

f(y′) = 2ρ2e(S ′) + (ρ2 − 2ρ)d(a+ 1).

200

Note that since (V,E) is d-regular, e(S ′) ≤ e(S) + d. Therefore,

f(y′)− f(y) = 2ρ2(e(S ′)− e(S)) + (ρ2 − 2ρ)d

≤ 2ρ2d+ ρ2d− 2ρd

= 3ρ2d− 2ρd.

For ρ ∈ (0, 2
3
), this quantity is negative. Therefore, increasing the sparsity of y will

decrease the objective function f(y). Therefore, the maximum of the r-ASP problem

applied to C will have y as sparse as possible. Since r = k+n(d−1) and ‖z‖0 ≤ n(d−1),

this implies that the maximum occurs at ‖y‖0 = k. Let S denote the support of y. The

objective function in (11.5) is then equal to

2ρ2e(S) + dρ2t− 2ρdt+ nd. (11.6)

This is clearly maximized when S is the set of vertices forming the densest k-

subgraph.

11.3 Bernoulli Gradient Codes

In this section we will consider the case that G has entries that are Bernoulli random

variables. For a given s, k, we will refer to the Bernoulli coding scheme as setting, for i ∈

{1, . . . , k}, j ∈ {1, . . . , n}, Gi,j = Bernoulli(s/k). Intuitively, by injecting randomness

into the construction of G, we improve our tolerance to adversarial stragglers. This

comes as the cost of worse average-case error. While [78] shows that if G is a Ramanujan

graph then we have strong bounds on its adversarial decoding error, such graphs are

notoriously tricky to compute. By using Bernoulli coding, we sacrifice a small amount

of error in order to achieve a much simpler, efficiently computable coding scheme.

201

Suppose that the stragglers are selected uniformly at random. Then, the non-

straggler submatrix A also has Bernoulli random entries. Note that the expected number

of tasks computed by any compute node is s. This construction will allow us to derive

high-probability bounds on the decoding error for s > log(k). We will later show that

we can enforce the desired sparsity s of each column and maintain the same error. More-

over, enforcing this desired sparsity will let us extend these error bounds to the setting

where s < log(k). In order to get a handle on the decoding error, we first develop a

method to bound the optimal and one-step decoding errors.

11.3.1 Bounding the Decoding Error

Suppose we have a function assignment matrix G such that the sparsity of each column

is exactly or approximately bounded by s. After performing the local computations on

each compute node, we have access to a k × r submatrix A of the r non-stragglers. We

assume that r = (1− δ)k for some δ ≥ 0.

We would like to derive high probability bounds on err(A) in order to bound the

optimal decoding error of A, as in (10.3). Unfortunately, it is not straightforward to

directly bound this error for a random matrix A since it involves the pseudo-inverse of

A. Instead, we will use an algorithmic approach to bound the optimal decoding error

with high probability. The following lemma is adapted from [107].

Lemma 11.11. Let u0 = 1k, and define

ut = ut−1 −
AAT

ν
ut−1.

If ν ≥ ‖A‖22 then

lim
t→∞
‖ut‖22 = err(A).

202

Moreover, for all t, ‖ut‖22 ≥ err(A).

We refer to the ut as the algorithmic decoding error of A. To prove Lemma 11.11,

we will use the following lemma, adapted from [107].

Lemma 11.12. If u is in the column span of A and ν ≥ ‖A‖22 then

∥∥∥∥
(

I− AAT

ν

)
u

∥∥∥∥
2

≤
(

1− σmin(A)2

ν

)
‖u‖2.

Proof of Lemma 11.11. Fix some t ≥ 1. We can decompose 1k as v + w where v is the

orthogonal projection of 1k on to the column span of A and w is in the nullspace of AT .

Note that this implies that (I−AAT/ν)w = w. Therefore,

ut =

(
I− AAT

ν

)t
(v + w) =

(
I− AAT

ν

)t
v + w.

Since v is in the span of A,
(
I− AAT

ν

)t
v is also in the span of A and orthogonal to w.

By Lemma 11.12,

‖ut‖22 =

∥∥∥∥∥

(
I− AAT

ν

)t
v

∥∥∥∥∥
2

+ ‖w‖22.

≤
(

1− σmin(A)2

ν

)2t

‖v‖22 + ‖w‖22.

By construction, ‖w‖22 = minx ‖Ax− 1k‖22, completing the proof.

Note that the ut are defined as the iterates of projected gradient descent. Consider

the setting where ν = ‖A‖22. The matrix P = AAT/‖A‖22 is a projection operator

(ie. P2 = P), and it projects a vector on to the column-span of A. By letting ut =

ut−1−Put−1, Lemma 11.11 one can show that this eventually converges to u0−AA+u0.

In other words, we eventually converge to the component of u0 that is orthogonal to the

range of A. Taking u0 = 1k, this eventually converges to err(A).

203

We can better understand ut by taking a combinatorial view. Note that A encodes

a bipartite graph with k left vertices and r right vertices, where Aij is 1 iff there is an

edge between vertex i on the left and vertex j on the right. Column j of A corresponds

to the incidence of the jth right vertex. In particular, the degree of vertex j on the

right equal the number of tasks computed by compute node j. We can compute ‖ut‖22

in terms of walks on this bipartite graph.

Lemma 11.13. 1Tk (AAT)t1k equals the number of paths of length 2t from a left vertex

to a right vertex.

Proof. Note that (AAT)ij is the number of paths of length 2 from the vertex i to vertex

j, where i, j are both left vertices. More generally, (AAT)tij counts the weighted number

of paths of length 2t from vertex i to vertex j. Therefore, 1k(AAT)t1k is the weighted

number of paths of length 2t from a left vertex to a left vertex.

Lemma 11.14. Let at denote the weighted number of walks in the associated bipartite

graph of A of length 2t starting and ending at a left vertex. Then

‖ut‖22 = a0 −
(

2t

1

)
a1
ν

+

(
2t

2

)
a2
ν2
− . . .+

(
2t

2t

)
a2t
ν2t

.

Proof. By direct computation we have

‖ut‖22 =

∥∥∥∥
(

I− AAT

ν

)
ut−1

∥∥∥∥
2

2

=

∥∥∥∥∥

(
I− AAT

ν

)t
1k

∥∥∥∥∥

2

2

= 1Tk 1k −
(

2t

1

)
1TkAAT1k

ν
+

(
2t

2

)
1Tk (AAT)21k

ν2
− . . .+

(
2t

2t

)
1Tk (AAT)2t1k

ν2t
.

By Lemma 11.13, the result follows.

204

While ut may be difficult to bound for sufficiently large t, we can handle u1 more

directly. Moreover, as theory and simulations will show, even u1 will give us good bounds

on err(A).

11.3.2 One-step Error of Bernoulli Gradient Codes

Recall that our function assignment matrix G has entries that are Bernoulli random

variables with probability s/k. The non-straggler matrix A is a column submatrix and

therefore also has Bernoulli random entries. We will view A as encoding a bipartite

graph with k left vertices and r right vertices. We say that there is an edge between

left vertex i and right vertex j iff Ai,j = 1. Note that E[A] = s
k
1k×r. Therefore, the

expected degree of any vertex in the associated bipartite graph is at most s. We will

bound ‖A−EA‖2 for various s and use this to bound err(A). We will use the following

lemma.

Lemma 11.15. Suppose ‖A− EA‖2 ≤ γ. If ρ = k
rs

then

err1(A) ≤ γ2k

(1− δ)s2
.

Proof. By standard norm properties,

∥∥∥∥
k

rs
A1r − 1k

∥∥∥∥
2

2

=

∥∥∥∥
k

rs
A1r −

k

rs
EA1r

∥∥∥∥
2

2

≤ k2

r2s2
‖A− EA‖22‖1r‖22

≤ γ2k2

rs2

=
γ2k

(1− δ)s2
.

205

This approach is analogous to bounding u1, as the following lemma shows.

Lemma 11.16. Suppose that ‖A−EA‖2 ≤ γ where γ ≤
√

(1− δ)s. Then for ν = rs2

k
,

u1 ≤
5γ2k

(1− δ)s2
.

Proof. Recall that for a given ν, u1 is given by

u1 =

∥∥∥∥
(

I− AAT

ν

)
1k

∥∥∥∥
2

2

.

We then have

u1 =

∥∥∥∥1k −
AAT

ν
1k

∥∥∥∥
2

2

=

∥∥∥∥1k −
A(EAT + AT − EAT)

ν
1k

∥∥∥∥
2

2

≤
∥∥∥∥1k −

AEAT

ν
1k

∥∥∥∥
2

2

+

∥∥∥∥
A(AT − EAT)

ν
1k

∥∥∥∥
2

2

.

Note that EA = s
k
1k×r. Therefore, 1k = k

rs
EA1r. Using this fact and taking ν = rs2

k
,

we get

u1 ≤
∥∥∥∥1k −

AEAT

ν
1k

∥∥∥∥
2

2

+

∥∥∥∥
A(AT − EAT)

ν
1k

∥∥∥∥
2

≤
∥∥∥∥
k

rs
EA1r −

sA

ν
1r

∥∥∥∥
2

2

+
1

ν2
‖A‖22‖A− EA‖22‖1k‖22

≤ k2

rs2
‖A− EA‖22 +

k3

r2s4
‖A‖22‖A− EA‖22.

Note that since EA = s
k
1k×r, we have

‖EA‖2 =
s

k
‖1k×r‖2 =

s

k

√
kr =

√
1− δs.

206

Using our assumption that ‖A− EA‖2 ≤ γ ≤
√

(1− δ)s, we find

‖A‖22 ≤ (‖EA‖2 + γ)2

≤ (2
√

(1− δ)s)2

≤ 4(1− δ)s2.

Finally, this implies

u1 ≤
k2

rs2
‖A− EA‖22 +

k3

r2s4
‖A‖22‖A− EA‖22

≤ k2γ2

rs2
+

4k3(1− δ)s2γ2

r2s2

=
5γ2k

(1− δ)s2
.

Therefore, to bound err1(A) or u1, it suffices to bound ‖A − EA‖2. Moreover, the

bounds we get by either method are within a constant factor of each other. By [37], if

s � log4(k), then A will concentrate well around EA. This bound was later improved

by the following result from [55].

Lemma 11.17. Suppose we have a random Erdos-Renyi graph G(n, p) with adjacency

matrix B where np ≥ log(n). For any α ≥ 1 there exists a universal constant C1 = C1(α)

such that with probability at least 1− n−α,

‖B− EB‖2 ≤ C1
√
np.

More generally, assume that B is a n × n adjacency matrix where Bi,j is Bernoulli

with probability pi,j. This is sometimes referred to as the inhomogeneous Erdos-Renyi

model G(n, (pi,j). Let p = maxi,j pi,j. As discussed in [53], Lemma 11.17 extends to this

207

setting using this definition of p (see section 1.1). While this result applies directly to

n× n adjacency matrices, we can easily extend this to A. This will first require a basic

lemma about the spectral norm of a structured block matrix.

Lemma 11.18. Let D be a n1 × n2 matrix. Suppose that C is a n× n block matrix of

the form

C =

0 D

DT 0

 .

Then ‖C‖2 = ‖D‖2.

Proof. Standard properties of singular values imply that ‖DTD‖2 = ‖DDT‖2 = ‖D‖22.

Moreover,

CCT =

DDT 0

0 DTD

 .

Since the eigenvalues of a block diagonal matrix are given by the eigenvalues of all the

blocks,

‖C‖22 = ‖CCT‖2 = max{‖DTD‖2, ‖DDT‖2} = ‖D‖22.

Theorem 11.19. Let A be a k × r matrix where k ≥ r and Ai,j is Bernoulli with

probability s/k. Then for all α ≥ 1, there exists a universal constant C2 = C2(α) such

that with probability at least 1− (k + r)−α,

‖A− EA‖2 ≤ C2

√
s.

Proof. A encodes the structure of a bipartite graph with k+r vertices. After relabeling,

we can denote these vertices as v1, . . . , vk, vk+1, . . . , vk+r where the bipartite blocks are

208

given by {v1, . . . , vk}, {vk+1, . . . , vk+r}. The adjacency matrix B is therefore of the form

B =

0 A

AT 0

 .

Note that B comes from an inhomogeneous Erdos-Renyi graph G(k + r, (pi,j)) where

pi,j is zero if i and j are both in {1, . . . , k} or {k + 1, . . . , k + r}, and s/k otherwise.

Therefore, p = maxi,j pi,j = s/k. By Lemma 11.17 (and the discussion following it), for

all α > 0 there exists some universal constant C1 = C1(α) such that with probability at

least 1− (k + r)−α,

‖B− EB‖2 ≤ C1

√
(k + r)s

k
≤
√

2C1

√
s.

Here, we used the fact that r ≤ k. Note that EB satisfies

EB =

0 EA

EAT 0

 .

Therefore,

‖B− EB‖2 =

∥∥∥∥∥∥∥

0 A− EA

(A− EA)T 0

∥∥∥∥∥∥∥
2

= ‖A− EA‖2.

This last equality holds by Lemma 11.18. Taking C2 =
√

2C1 we conclude the proof.

Combining this with Lemma 11.15, we get the following theorem.

Theorem 11.20. Suppose that s ≥ log(n). Then for any α ≥ 1, there is a universal

constant C2 = C2(α) such that for ρ = k
rs

, with probability at least 1− (k + r)−α,

err1(A) ≤ C2
2k

(1− δ)s
.

209

Remark 11.21. Empirically, the same bound holds for other methods of generating

G. If we choose the non-zero support of each column by selecting s indices with or

without replacement from {1, . . . , k}, then we conjecture that the same theorem holds.

Unfortunately, standard concentration inequalities are not enough to prove this result in

such settings.

11.3.3 Regularized Bernoulli Gradient Codes

Bernoulli codes have two issues when s < log(k). First, each column only computes s

tasks in expectation, but may have columns with degree up to s+ log(k). If s ≥ log(k),

this is not an issue as this gives us sparsity that is O(s). When s < log(k), however,

this may be an issue. Second, if s � log(k), A may not concentrate around EA. For

example, if s = O(1) then by [51],

‖A‖2 = (1 + o(1))

√
log k

log log k
.

On the other hand, EA = p1k×r so ‖EA‖2 = p
√
kr =

√
1− δs. For s � log(k), this

implies that A does not concentrate as well. Therefore we cannot use Lemma 11.15 to

bound err(A).

Both of these issues have the same cause: vertices whose degree is too large. For-

tunately, this issue of enforcing concentration of sparse graphs has been studied and

partially resolved in [53]. They show that by appropriate regularization of graphs, we

can improve their concentration in the sparse setting.

Theorem 11.22 ([53]). Let B be a random graph from the inhomogeneous Erdos-Renyi

model G(n, (pi,j)) and let p = maxi,j pi,j. For any α ≥ 1, the following holds with

probability at least 1 − n−α. Take all vertices of B with degree larger than 2np and

210

reduce the weights of the edges incident to those vertices in any way such that they have

degree at most np. Let B′ denote the resulting graph. Then

‖B′ − EB‖2 ≤ C3r
3/2√np.

Here C3 is a universal constant. Note that this regularization can be performed

analogously on A. To form A′, we simply look at all columns with degree more than

2s and change entries in those columns from 1 to 0 until these columns have degree s.

This satisfies the criterion in the above theorem. We can then use an almost identical

version of the proof of Theorem 11.19 to prove the following theorem.

Theorem 11.23. There is a universal constant C4 = C4(α) such that for any α ≥ 1,

s ≥ 1, with probability at least 1− (k + r)−α,

‖A′ − EA‖2 ≤ C3α
3/2
√
s.

We can combine this with Lemma 11.15 to derive the following theorem concerning

err(A′). As before, this bound applies for both the one-step decoding and the optimal

decoding.

Theorem 11.24. For any α ≥ 1, s ≥ 1, and letting ρ = k
rs

, with probability at least

1− (k + r)−α,

err1(A
′) ≤ C2

3α
3k

(1− δ)s
.

This approach ensures that each compute node computes at most 2s tasks and that

our error bound works for all s. Note that in practice, we cannot form A′ from A as

we do not know A a priori. Therefore we cannot tell the compute nodes to compute

the functions corresponding to A′. Instead, we can regularize G in the same manner to

211

obtain G′ in the following way such that we can apply Theorem 11.24 above. We refer

to this code as the regularized Bernoulli Gradient Code, (rBGC).

The construction is simple. We initialize G with each entry Bernoulli(s/k). For each

column j with more than 2s non-zero entries, we randomly set entries to 0 until it has

s non-zero entries. A detailed algorithm is provided below.

Algorithm 7: Regularized Bernoulli Gradient Code.

Input : n, k, s.
Output: A k × n regularized function assignment matrix G′ with max degree

≤ 2s
G′ = 0k×n.;
for j = 1 to n do

d = 0;
for i = 1 to k do

G′i,j = Bernoulli(s/k);
d = d+ G′i,j;

end
if d > 2s then

while d > s do
remove a random edge from column j;
d = d− 1;

end

end

end
return G′;

212

11.4 Simulations

11.4.1 Decoding Error of Various Coding Schemes

In this section we compare the empirical decoding error of the FRCs and the BGCs.

Recall that we gave two decoding methods that achieve the optimal decoding error

err(A) = min
x
‖Ax− 1k‖22

and the one-step decoding error

err1(A) =

∥∥∥∥
k

rs
A1r − 1k

∥∥∥∥
2

2

.

We also compare FRCs and BGCs to a coding scheme proposed in [78]. There, Raviv et

al. consider the scheme where G is an s-regular expander. They show that for all k× r

submatrices A,

err1(A) ≤ λ(G)2

s2
δk

(1− δ)
.

Here, λ(G) = max{|λ2|, |λk|}, where the eigenvalues of G are given by

λ1 ≥ λ2 ≥ . . . ≥ λk.

We would like to construct G to have λ as small as possible. This is achieved by

Ramanujan graphs. In practice, constructing expander graphs with small values of λ

is difficult. By taking a random s-regular graph, however, we can obtain can expander

graph with high probability [63]. As k →∞, λ tends to the optimal value. In order to

generate empirical data, we consider the setting where G is the adjacency matrix of a

random s-regular graph.

213

Below, we plot the one-step and optimal decoding error err(A) and err1(A) for these

three schemes when k = 100 and the fraction of stragglers δ varies. In order to normalize

the error, we plot err(A)/k and err1(A)/k. We take ρ = k
rs

in the one-step decoding.

(a) s = 5 (b) s = 10

Figure 22: A plot of the average one-step error err1(A)/k over 5000 trials. We
take k = 100, r = (1− δ)k for varying δ. The figure on the left has s = 5 while
the figure on the right has s = 10.

We see that under one-step decoding, FRCs and s-regular expanders perform ex-

tremely comparably. In this setting, BGCs seem to sacrifice some accuracy for simplicity.

However, FRCs are also computationally simple and perform as well as taking s-regular

expanders in the average case.

These plots show that if we instead consider optimal decoding, then FRCs greatly

outperform the other two methods. In particular, FRCs can achieve zero optimal de-

coding error even with a non-trivial fraction of stragglers. If s = 10, then we can achieve

close to zero error even with half of the compute nodes being stragglers.

214

(a) s = 5 (b) s = 10

Figure 23: A plot of the average optimal decoding error err(A)/k over 5000
trials. We take k = 100, r = (1− δ)k for varying δ. The figure on the left has
s = 5 while the figure on the right has s = 10.

11.4.2 Algorithmic Decoding Error of Bernoulli Coding

In this section we give empirical one-step error rates for varying sizes of r and sparsity

s of the matrix A for various coding schemes. Recall that we defined the algorithmic

decoding error of A by a sequence of vectors ut. Here, ‖u1‖22 corresponds to the one-step

decoding error, while ‖ut‖22 converges to the optimal decoding error.

We consider the setting where G is constructed via a BGC. We fix k = 100 and take

varying values of δ and s, letting r = (1 − δ)s. We then calculate the average value of

‖ut‖22/k based on a Monte Carlo simulation for increasing values of t. We set ρ = ‖A‖22.

The results are below.

215

(a) s = 5 (b) s = 10

Figure 24: The average value of ‖ut‖22/k of a BGC for δ ∈ {0.1, 0.2, 0.3, 0.5, 0.8}
and varying t for 5000 trials. The figure on the left plots the algorithmic error
for sparsity s = 5, while the figure on the right plots the algorithmic error for
sparsity s = 10.

216

Bibliography

[1] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective

straggler mitigation: Attack of the clones. In NSDI, volume 13, pages 185–198,

2013.

[2] Mihai Anitescu. Degenerate nonlinear programming with a quadratic growth con-

dition. SIAM Journal on Optimization, 10(4):1116–1135, 2000.

[3] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense

subgraphs. Discrete Applied Mathematics, 121(1):15–26, 2002.

[4] Bernard A Asner, Jr. On the total nonnegativity of the Hurwitz matrix. SIAM

Journal on Applied Mathematics, 18(2):407–414, 1970.

[5] Karl Johan Aström and Richard Murray. Feedback systems: an introduction for

scientists and engineers. Princeton university press, 2010.

[6] Keith Ball. An elementary introduction to modern convex geometry. Flavors of

geometry, 31:1–58, 1997.

[7] Stephen Becker, Emmanuel Candès, and Michael Grant. Templates for convex cone

problems with applications to sparse signal recovery. Mathematical programming

computation, 3(3):165–218, 2011.

[8] Walter Bergweiler and Alexandre Eremenko. Goldbergs constants. Journal

d’Analyse Mathématique, 119(1):365–402, 2013.

217

[9] Vincent Blondel. Simultaneous stabilization of linear systems. 1994.

[10] Joseph Frédéric Bonnans and Alexander Ioffe. Second-order sufficiency and

quadratic growth for nonisolated minima. Mathematics of Operations Research,

20(4):801–817, 1995.

[11] Nigel Boston. On the Belgian chocolate problem and output feedback stabiliza-

tion: Efficacy of algebraic methods. In Communication, Control, and Computing

(Allerton), 2012 50th Annual Allerton Conference on, pages 869–870. IEEE, 2012.

[12] Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn.

Res., 2:499–526, March 2002.

[13] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-

tributed optimization and statistical learning via the alternating direction method

of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011.

[14] Paul Bradley and Olvi Mangasarian. K-plane clustering. Journal of Global Opti-

mization, 16(1):23–32, 2000.

[15] René Brandenberg. Radii of regular polytopes. Discrete & Computational Geom-

etry, 33(1):43–55, 2005.

[16] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foun-

dations and Trends R© in Machine Learning, 8(3-4):231–357, 2015.

[17] James Burke, Didier Henrion, Adrian Lewis, and Michael Overton. Analysis of

a Belgian chocolate stabilization problem. LAAS-CNRS Research Report, 5164,

2005.

218

[18] Elizabeth Burnside, Jesse Davis, Vı́tor Santos Costa, Inês de Castro Dutra, Charles

Kahn Jr, Jason Fine, and David Page. Knowledge discovery from structured mam-

mography reports using inductive logic programming. In AMIA Annual Sympo-

sium Proceedings, volume 2005, page 96. American Medical Informatics Associa-

tion, 2005.

[19] Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex

optimization. Communications of the ACM, 55(6):111–119, 2012.

[20] YoungJung Chang and Nikolaos Sahinidis. Global optimization in stabilizing con-

troller design. Journal of Global Optimization, 38(4):509–526, 2007.

[21] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting

distributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[22] João Paulo Costeira and Takeo Kanade. A multibody factorization method

for independently moving objects. International Journal of Computer Vision,

29(3):159–179, 1998.

[23] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed

deep networks. In Advances in Neural Information Processing Systems, pages

1223–1231, 2012.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

219

[25] Luc Devroye and Terry Wagner. Distribution-free performance bounds for po-

tential function rules. IEEE Transactions on Information Theory, 25(5):601–604,

1979.

[26] David Donoho. For most large underdetermined systems of linear equations the

minimal 1-norm solution is also the sparsest solution. Communications on pure

and applied mathematics, 59(6):797–829, 2006.

[27] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. Short-dot: Computing

large linear transforms distributedly using coded short dot products. In Advances

In Neural Information Processing Systems, pages 2100–2108, 2016.

[28] Cynthia Dwork. Differential privacy. In 33rd International Colloquium on Au-

tomata, Languages and Programming, part II (ICALP 2006), volume 4052, pages

1–12, Venice, Italy, July 2006. Springer Verlag.

[29] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold,

and Aaron Leon Roth. Preserving statistical validity in adaptive data analysis.

In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing, pages 117–126. ACM, 2015.

[30] Ehsan Elhamifar. High-rank matrix completion and clustering under self-

expressive models. In Advances in Neural Information Processing Systems, pages

73–81, 2016.

[31] Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2790–

2797. IEEE, 2009.

220

[32] Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. Stability of ran-

domized learning algorithms. J. Mach. Learn. Res., 6:55–79, December 2005.

[33] Charles Elkan and Keith Noto. Learning classifiers from only positive and unla-

beled data. In Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 213–220. ACM, 2008.

[34] Brian Eriksson, Laura Balzano, and Robert Nowak. High-rank matrix completion.

In AISTATS, pages 373–381, 2012.

[35] Brian Eriksson, Paul Barford, Joel Sommers, and Robert Nowak. DomainImpute:

Inferring unseen components in the internet. In INFOCOM, 2011 Proceedings

IEEE, pages 171–175. IEEE, 2011.

[36] William Fithian and Trevor Hastie. Finite-sample equivalence in statistical models

for presence-only data. The annals of applied statistics, 7(4):1917, 2013.

[37] Zoltán Füredi and János Komlós. The eigenvalues of random symmetric matrices.

Combinatorica, 1(3):233–241, 1981.

[38] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for

nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–

2368, 2013.

[39] Alon Gonen and Shai Shalev-Shwartz. Fast rates for empirical risk minimization

of strict saddle problems. arXiv preprint, arXiv:1701.04271, 2017.

221

[40] Amit Gruber and Yair Weiss. Multibody factorization with uncertainty and miss-

ing data using the em algorithm. In Computer Vision and Pattern Recognition,

volume 1. IEEE, 2004.

[41] He Guannan, Wang Long, Xia Bican, and Yu Wensheng. Stabilization of the

Belgian chocolate system via low-order controllers. In Control Conference, 2007.

CCC 2007. Chinese, pages 88–92. IEEE, 2007.

[42] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. CoRR,

abs/1611.04231, 2016.

[43] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better:

Stability of stochastic gradient descent. In Proceedings of the 33nd International

Conference on Machine Learning, ICML 2016, New York City, NY, USA, June

19-24, 2016, pages 1225–1234, 2016.

[44] Wei Hong, John Wright, Kun Huang, and Yi Ma. Multiscale hybrid linear

models for lossy image representation. IEEE Transactions on Image Processing,

15(12):3655–3671, 2006.

[45] Alexander Ioffe. On sensitivity analysis of nonlinear programs in banach spaces:

the approach via composite unconstrained optimization. SIAM Journal on Opti-

mization, 4(1):1–43, 1994.

[46] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using pre-

dictive variance reduction. In Advances in Neural Information Processing Systems,

pages 315–323, 2013.

222

[47] Kenichi Kanatani. Motion segmentation by subspace separation and model selec-

tion. In Proceedings Eighth IEEE International Conference on Computer Vision.

ICCV 2001, volume 2, pages 586–591 vol.2, 2001.

[48] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear Convergence of Gradient

and Proximal-Gradient Methods Under the Polyak- Lojasiewicz Condition, pages

795–811. Springer International Publishing, Cham, 2016.

[49] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural

Information Processing Systems, pages 586–594, 2016.

[50] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. On large-batch training for deep learning: Generaliza-

tion gap and sharp minima. arXiv preprint, arXiv:1609.04836, 2016.

[51] Michael Krivelevich and Benny Sudakov. The largest eigenvalue of sparse random

graphs. Comb. Probab. Comput., 12(1):61–72, January 2003.

[52] Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic

gradient descent. arXiv preprint, arXiv:1703.01678, 2017.

[53] Can M Le, Elizaveta Levina, and Roman Vershynin. Concentration and regular-

ization of random graphs. Random Structures & Algorithms, 2017.

[54] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and

Kannan Ramchandran. Speeding up distributed machine learning using codes.

In Information Theory (ISIT), 2016 IEEE International Symposium on, pages

1143–1147. IEEE, 2016.

223

[55] Jing Lei, Alessandro Rinaldo, et al. Consistency of spectral clustering in stochastic

block models. The Annals of Statistics, 43(1):215–237, 2015.

[56] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. Coded mapre-

duce. In Communication, Control, and Computing (Allerton), 2015 53rd Annual

Allerton Conference on, pages 964–971. IEEE, 2015.

[57] Henry Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning

work so well? Journal of Statistical Physics, 168(6):1223–1247, 2017.

[58] Junhong Lin, Raffaello Camoriano, and Lorenzo Rosasco. Generalization proper-

ties and implicit regularization for multiple passes sgm. In International Confer-

ence on Machine Learning, 2016.

[59] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip Yu. Building text classifiers

using positive and unlabeled examples. In Data Mining, 2003. ICDM 2003. Third

IEEE International Conference on, pages 179–186. IEEE, 2003.

[60] Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stabil-

ity and hypothesis complexity. arXiv preprint, arXiv:1702.08712, 2017.

[61] Stanis law Lojasiewicz. A topological property of real analytic subsets. Coll. du

CNRS, Les équations aux dérivées partielles, 117:87–89, 1963.

[62] J Kenji López-Alt. The Food Lab: Better Home Cooking Through Science. WW

Norton & Company, 2015.

[63] Alexander Lubotzky. Expander graphs in pure and applied mathematics. Bulletin

of the American Mathematical Society, 49(1):113–162, 2012.

224

[64] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan

Ramchandran, and Michael I Jordan. Perturbed iterate analysis for asynchronous

stochastic optimization. SIAM Journal on Optimization, 27(4):2202–2229, 2017.

[65] Pertti Mattila. Geometry of sets and measures in Euclidean spaces: fractals and

rectifiability, volume 44. Cambridge university press, 1999.

[66] Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. Learning the-

ory: stability is sufficient for generalization and necessary and sufficient for con-

sistency of empirical risk minimization. Advances in Computational Mathematics,

25(1):161–193, 2006.

[67] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol

Kurach, and James Martens. Adding gradient noise improves learning for very deep

networks. arXiv preprint arXiv:1511.06807, 2015.

[68] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization

problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[69] Yurii Nesterov. Introductory lectures on convex optimization: A basic course,

volume 87. Springer Science & Business Media, 2013.

[70] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Advances in neural information processing systems, pages

849–856, 2002.

[71] Kobbi Nissim and Uri Stemmer. On the generalization properties of differential

privacy. CoRR, abs/1504.05800, 2015.

225

[72] Vijay Patel, Girish Deodhare, and T Viswanath. Some applications of randomized

algorithms for control system design. Automatica, 38(12):2085–2092, 2002.

[73] Jennie Pearce and Mark Boyce. Modelling distribution and abundance with

presence-only data. Journal of applied ecology, 43(3):405–412, 2006.

[74] Daniel Pimentel-Alarcón, Laura Balzano, Roummel Marcia, R Nowak, and Re-

becca Willett. Group-sparse subspace clustering with missing data. In Statistical

Signal Processing Workshop (SSP), 2016 IEEE, pages 1–5. IEEE, 2016.

[75] Daniel Pimentel-Alarcon and Robert Nowak. The information-theoretic require-

ments of subspace clustering with missing data. In International Conference on

Machine Learning, pages 802–810, 2016.

[76] Hang Qi, Evan Sparks, and Ameet Talwalkar. Paleo: A performance model for

deep neural networks. In International Conference on Learning Representations,

2017.

[77] Shankar Rao, Roberto Tron, René Vidal, and Yi Ma. Motion segmentation via

robust subspace separation in the presence of outlying, incomplete, or corrupted

trajectories. In Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[78] Netanel Raviv, Itzhak Tamo, Rashish Tandon, and Alexandros Dimakis. Gra-

dient coding from cyclic mds codes and expander graphs. arXiv preprint

arXiv:1707.03858, 2017.

[79] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A

226

lock-free approach to parallelizing stochastic gradient descent. In Advances in

neural information processing systems, pages 693–701, 2011.

[80] Amirhossein Reisizadeh, Saurav Prakash, Ramtin Pedarsani, and Salman Aves-

timehr. Coded computation over heterogeneous clusters. In Information Theory

(ISIT), 2017 IEEE International Symposium on, pages 2408–2412. IEEE, 2017.

[81] David Rumelhart, Geoffrey Hinton, Ronald Williams, et al. Learning representa-

tions by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[82] Hong Ryoo and Nikolaos Sahinidis. A branch-and-reduce approach to global op-

timization. Journal of Global Optimization, 8(2):107–138, 1996.

[83] Nihar Shah, Kangwook Lee, and Kannan Ramchandran. When do redundant

requests reduce latency? IEEE Transactions on Communications, 64(2):715–722,

2016.

[84] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

[85] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learn-

ability, stability and uniform convergence. Journal of Machine Learning Research,

11(Oct):2635–2670, 2010.

[86] Mahdi Soltanolkotabi and Emmanuel Cands. A geometric analysis of subspace

clustering with outliers. Ann. Statist., 40(4):2195–2238, 08 2012.

[87] Mahdi Soltanolkotabi, Ehsan Elhamifar, and Emmanuel Candés. Robust subspace

clustering. The Annals of Statistics, 42(2):669–699, 2014.

227

[88] Michel Talagrand. Concentration of measure and isoperimetric inequalities in

product spaces. Publications Mathematiques de l’IHES, 81(1):73–205, 1995.

[89] Rashish Tandon, Qi Lei, Alexandros Dimakis, and Nikos Karampatziakis. Gradient

coding: Avoiding stragglers in distributed learning. In International Conference

on Machine Learning, pages 3368–3376, 2017.

[90] Jan Verschelde. Algorithm 795: Phcpack: A general-purpose solver for polynomial

systems by homotopy continuation. ACM Transactions on Mathematical Software

(TOMS), 25(2):251–276, 1999.

[91] René Vidal and Richard Hartley. Motion segmentation with missing data using

PowerFactorization and GPCA. In Computer Vision and Pattern Recognition,

volume 2. IEEE, 2004.

[92] Rene Vidal, Yi Ma, and Shankar Sastry. Generalized principal component anal-

ysis GPCA. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(12):1945–1959, 2005.

[93] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[94] Da Wang, Gauri Joshi, and Gregory Wornell. Efficient task replication for fast

response times in parallel computation. In ACM SIGMETRICS Performance Eval-

uation Review, volume 42, pages 599–600. ACM, 2014.

[95] Yining Wang, Yu-Xiang Wang, and Aarti Singh. Graph connectivity in noisy

228

sparse subspace clustering. In Artificial Intelligence and Statistics, pages 538–546,

2016.

[96] Yu-Xiang Wang and Huan Xu. Noisy sparse subspace clustering. J. Mach. Learn.

Res., 17(1):320–360, January 2016.

[97] Gill Ward, Trevor Hastie, Simon Barry, Jane Elith, and John Leathwick. Presence-

only data and the em algorithm. Biometrics, 65(2):554–563, 2009.

[98] Stephen Wright. Primal-dual interior-point methods. SIAM, 1997.

[99] Bo Xie, Yingyu Liang, and Le Song. Diverse neural network learns true target

functions. In Artificial Intelligence and Statistics, pages 1216–1224, 2017.

[100] Neeraja Yadwadkar and Wontae Choi. Proactive straggler avoidance using machine

learning. White paper, University of Berkeley, 2012.

[101] Allen Yang, John Wright, Yi Ma, and Shankar Sastry. Unsupervised segmenta-

tion of natural images via lossy data compression. Computer Vision and Image

Understanding, 110(2):212–225, 2008.

[102] Congyuan Yang, Daniel Robinson, and René Vidal. Sparse subspace clustering

with missing entries. In Proceedings of the 32nd International Conference on In-

ternational Conference on Machine Learning, volume 37, pages 2463–2472, 2015.

[103] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,

2010.

229

[104] Amy Zhang, Nadia Fawaz, Stratis Ioannidis, and Andrea Montanari. Guess who

rated this movie: Identifying users through subspace clustering. In Proceedings

of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence, pages

944–953, 2012.

[105] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. arXiv preprint,

arXiv:1611.03530, 2016.

[106] Pan Zhou and Jiashi Feng. The landscape of deep learning algorithms. arXiv

preprint, arXiv:1705.07038, 2017.

[107] Anastasios Zouzias and Nikolaos M Freris. Randomized extended kaczmarz

for solving least squares. SIAM Journal on Matrix Analysis and Applications,

34(2):773–793, 2013.

	Abstract
	Acknowledgements
	Introduction
	How to Read this Thesis
	Baking a Better Cake: Machine Learning and Optimization
	The Science of Food v. the Role of Mathematics

	Mathematical Background
	Optimization
	Convexity
	First-order Methods

	Machine Learning
	Optimization for Machine Learning

	Summary of Results

	I Algebraic Optimization for Simultaneous Stabilization
	Control, Optimization, and the Belgian Chocolate Problem
	Background
	The Belgian Chocolate Problem
	Our Contributions

	Stability of Closed-Feedback Systems
	Motivation for our approach
	Admissible and Quasi-admissible
	Mathematical Perspective and Main Results

	Algebraic Optimization for the Belgian Chocolate Problem
	Low degree examples
	Algebraic specification
	Approximating quasi-admissible by admissible
	Optimality of algebraic specification

	II Subspace Clustering
	The Subspace Clustering Problem
	Background
	Clustering
	Matrix Completion

	Prior Work
	Our Contributions

	Problem Statement
	Sparse Subspace Clustering
	LS-SSC

	Mathematical Perspectives and Summary of Results

	Subspace Clustering with Missing and Corrupted Data
	Preliminaries
	Dual Programs and Convex Geometry
	Dual Directions and Incoherence

	Main Results
	Deterministic Model
	Random Model
	Missing Data Model

	Dual Certificates and the Deterministic Model
	Dual Certificates
	Bounding "026B30D "026B30D 2
	Towards a Deterministic Criteria
	Finding Admissible
	Proof of Theorem 6.6

	High-Dimensional Probability and the Random Model
	Random Projections and Missing Data

	III Stability and Generalization
	Stability and Generalization of Learning Algorithms
	Background
	Prior work
	Our Contributions

	Algorithmic Stability
	Stability and (Strongly) Convex Loss Functions

	Mathematical Perspective and Main Results

	Stability and the Polyak-Łojasiewicz Condition
	The Polyak-Łojasiewicz and Quadratic Growth Conditions
	Black-box Stability of Approximate Global Minima
	Pointwise Hypothesis Stability for PL/QG Loss Functions
	Uniform Stability for PL/QG Loss Functions

	Examples of PL Loss Functions
	Compositions of Strongly Convex and Piecewise-Linear Functions
	Linear Neural Networks

	Stability of Some First-order Methods
	Stability for Strongly Convex and PL Loss Functions
	Stability of Gradient Descent for Convex Loss Functions
	Instability of Gradient Descent for Non-convex Loss Functions

	IV Distributed Machine Learning and Gradient Coding
	Gradient Coding
	Background
	Distributed Computation and the Straggler Effect
	Distributed Machine Learning

	Previous Work
	Our Contributions

	Problem Statement
	Approximate Gradient Coding

	Decoding
	Mathematical Perspective and Main Results

	Approximate Gradient Codes
	Fractional Repetition Codes
	Adversarial Stragglers
	Adversarial Stragglers and Fractional Repetition Codes
	Adversarial Straggler Selection is NP-hard

	Bernoulli Gradient Codes
	Bounding the Decoding Error
	One-step Error of Bernoulli Gradient Codes
	Regularized Bernoulli Gradient Codes

	Simulations
	Decoding Error of Various Coding Schemes
	Algorithmic Decoding Error of Bernoulli Coding

	Bibliography

